Researchers at the UCLA Henry Samueli School of Engineering and Applied Science have demonstrated an intrinsically stretchable polymer light-emitting device. They developed a simple process to fabricate the transparent devices using single-walled carbon nanotube polymer composite electrodes. The interpenetrating networks of nanotubes and the polymer matrix in the surface layer of the composites lead to low sheet resistance, high transparency, high compliance and low surface roughness.
The metal-free devices can be linearly stretched up to 45 percent and the composite electrodes can be reversibly stretched by up to 50 percent with little change in sheet resistance.