Heat transfer in electronic packages is a complex problem involving a network of resistive paths for the various laminated structures, bonding adhesives, lead frames, and attachment mechanisms, such as ball grid arrays. However, despite the multitude of materials and interfaces within an electronic package, the largest thermal resistance, and consequently the controlling … [Read more...]
Multilayer circuitry on metal substrates
Today's electronics are becoming smaller and faster, resulting in increased power densities and greater risk of thermal problems. Thermal dissipation requirements thus need to be satisfied by the use of several cooling mechanisms. The cooling systems may include conduction, convection and radiation cooling. Conduction can be the most efficient mode of heat transfer and about … [Read more...]
Low temperature electronic cooling
The potential for low temperature enhancement of CMOS performance has been recognized for some time, going back as far as the late 1960's and mid-1970's. A collection of articles focusing on low temperature electronics is included in the book by Kirschman(1) where a number of researchers [2-6] have identified the advantages of operating electronics at low temperatures. Jaeger … [Read more...]
High accuracy thermal interface resistance measurement using a transient method
Heat dissipation of active devices has become one of the limiting factors in further miniaturization. While component manufacturers succeed in decreasing the overall thermal resistance of their packages, the thermal interface resistance to the board becomes the next limiting factor. Therefore, understanding interface and contact resistances becomes increasingly important for … [Read more...]
Determining the junction temperature in a semiconductor package, part IV – localized heat generation on the die
In the standard thermal test environment, thermal test chips are designed to dissipate the applied power uniformly over most of the die surface. However, in many situations of practical interest, the power is dissipated over a localized area of the die. This column provides calculation methods to deal with the latter situation. Figure 1 illustrates the situation of interest … [Read more...]
- « Previous Page
- 1
- …
- 459
- 460
- 461
- 462
- 463
- …
- 481
- Next Page »