Wireless communication and advanced radar systems require circuitry that can operate at frequencies greater than 2 GHz and at high power levels. Analog gallium arsenide (GaAs) semiconductors are frequently used in these applications and present additional challenges for thermal engineers compared to silicon semiconductors. Whereas thermal characterization modeling and … [Read more...]
Thermal management of highly integrated electronic packages in avionics applications
The packaging and thermal management of electronic equipment has become an important issue because of increased power levels and the simultaneous miniaturization of the devices. With the advent of denser device packaging and faster intrinsic speeds, cost, reliability and size have been improved, but, unfortunately, packaging and thermal management have not followed at the same … [Read more...]
Vapor Compression Cooling for High Performance Applications
Vapor compression refrigeration is being adapted to cool computer and telecommunications equipment in a limited number of high performance applications. Vapor compression can lift large heat loads and can heat sink at below ambient temperatures. Cold plates can offset high case-to-junction temperature gradients to keep high power integrated circuits from overheating and/or can … [Read more...]
The submerged double jet impingement (SDJI) method for thermal testing of packages
Over the past decades, the functionality of electronic parts has improved considerably. Increasing power requirements of semiconductor chips make it difficult to keep the temperature below the imposed limits. Thermal management of the chip is one of the main functions of the package. To fully characterize the package thermally, numerical simulations and experimental tests are … [Read more...]
Parameters affecting package thermal performance a low end system level example
Thermal management of electronic equipment is a dynamic process. For example, the anticipated power trends for CMOS technology can be found in the roadmaps of [1 and 2]. They closely follow the rapidly rising power trends seen in the 1980s for the bi-polar circuits [3] but with a time shift by a decade. It is a fortunate circumstance that a tremendous amount of heat transfer … [Read more...]
- « Previous Page
- 1
- …
- 34
- 35
- 36
- 37
- 38
- …
- 40
- Next Page »









