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Let’s get things straight from the outset - I am not a statistician. However, over the past couple 

decades I have often fielded requests from co-workers to analyze test data, recommend 
test approaches for design of experiments, etc. This has provided me with opportunities to 

learn, forget, and relearn methods for analyzing test data to identify trends and determine, 
for example, if a trend is statistically significant. In many cases, a big part of that begins with 
identifying useful ways to plot the data – but formal statistical tests eventually find their way 
into the analysis.

A few years ago I decided that it would be somewhat fun and educational (for me at least) to put together a short 
course that teaches a few of the statistical lessons that I have learned during my career. I quickly addressed the most 
important aspect of this: coming up with what I thought was a good title of “I think that this course is probably about 
statistics”. My primary criteria to qualify as a ‘good’ title was something that both described my viewpoint and also 
amused me. My description of statistics is that it is a set of tools that apply the laws of probability to deal with the 
uncertainty that is inherent to any data. After putting that course together, I realized that it could provide suitable 
material for a series of columns in Electronics Cooling Magazine.

My goals with these columns have been to be mostly correct and always useful; I assume that classically trained 
statisticians might occasionally cringe at the ad hoc way I occasionally deal with some of the concepts though.  I  am 
not always as disciplined as I should be in defining, for example, what terms are related to an entire population or 
if they describe the characteristics of  a discrete set of measurements. I trust that my readers will gamely stick with 
me as I eventually (hopefully) reach my objective of providing a better understanding of fundamental concepts of 
statistics. In addition, whenever possible I have attempted to provide the reader with methods for conducting their 
own statistical analysis using spreadsheet tools such as Microsoft Excel.

Over time, I plan to add more columns to this document to describe other statistical topics that I find interesting and 
useful. So be on the lookout for updates with additional topics.

–Ross Wilcoxon

EDITORIAL
Ross Wilcoxon

Associate Technical Editor
Technical Fellow, Mechanical Engineer, Collins Aerospace

I Think That This Is Probably About Statistics
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Continuing steep reductions in the prices of consumer 
electronics products have made them more affordable in 
developing and developed economies. Helped by inno-
vations in sensor technology in the form of MEMS com-
ponents and augmented by communications technology, 
recent years have witnessed yet another explosion of 
connected devices such as wearables, fashion-tech wear-
ables, smart clothing, smart jewelry, fitness gadgets, virtu-
al assistants, home security appliances, drones, virtual re-
ality (VR) / augmented reality (AR) headsets, fashion-tech, 
and even more.

Not all the foregoing categories will need thermal man-
agement solutions, and many are well established product 
lines that are in their maturity and phase out stages of the 
life cycle.

However, their newer versions and respins will inevitably 
use cost-effective thermal management solutions.

In the design of newer generation consumer electronics 
products that do use thermal management solutions, the 
choices are equally challenging for vendors and designers 
alike – offer the best solution for the problem that is reli-
able, manufacturable and cost-effective. In the context of 
increasing expectation and decreasing price tags, achiev-
ing this feat is no easy task.

The following tables list typical products, albeit partially, 
in the consumer electronics and IoT market place (the 
names were arbitrarily chosen and Electronics Cooling® is 
not recommending them in any way). Thermal manage-
ment product component types are also listed.

PRODUCT MATRIX OF CONSUMER DEVICES (A PARTIAL LIST) THERMAL MANAGEMENT COMPONENTS
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Mobile Phones Apple iPhone, Samsung S7, LG, Motorola, Xiaomi X X X X X X X X

Digital Cameras Canon, Nikon, Sony, Olympus , Hasselblad X X X X X

Wearables (arm/wrist wear)
Fitbit, Pebble, Apple Watch, Xiaomi, Garmin, 
Samsung Gear, Withings

X X X X X

Smart/Comfort Clothing AiQ Smart Clothing, Sensoria X X X

Virtual Reality (VR) / Augmented
Reality (AR) Headsets

Facebook Oculus VR, Microsoft Hololens, Sensic’s 
OSVR, HTC Vive

X X X X X

Virtual Assistants Amazon Echo, Amazon Alexa Device, Google Home X X X X X X X

Drones GoPro, Parrot, DJI X X X X X X X X

Television & Entertainment
Hardware

4K Ultra High-Definition (4K UHD), OLED TV/
Displays, Apple TV, Google Chrome, Harmon 
Kardon, TiVO

X X X X X X X X X

Gaming Desktops / Laptops Acer, Velocity Micro, Lenovo, SkyTech X X X X X X X X X X

IOT GATEWAYS, NODES, MOTES, TAGS, ETC. (A PARTIAL LIST) THERMAL MANAGEMENT COMPONENTS

Mobile Phones Apple iPhone, Samsung, LG, Motorola, Xiaomi X X X X X X X X

Smart Home IoT Gateways
Amazon Echo, Google OnHub, Motorola, Libelium 
Meshlium, Rigado IoT Gateways, Logitech Harmony

X X X X X X X X X

Edge Node: Occupancy Sensors Libelium Plug & Sense, Lutron X X X X X X X

Edge Node: Home alarm systems Comcast, Libelium Plug & Sense X X X X X X X X X

Edge Node: Power monitoring Verdigris’ Einstein system X X X X X X X X X

Edge Node: Smart lighting Philips Hue Bridge, Lutron X X X X X X X X X

PRODUCT MATRIX
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THERMAL MANAGEMENT MANUFACTURERS TYPE OF PRODUCT/SERVICE

COMPANY CONTACT INFORMATION - URL
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AAVID THERMALLOY www.aavid.com/ X X X

Alpha Novatech, Inc. www.alphanovatech.com X X

Amulaire www.amulaire.com/ X

Adaptive Corporation-A TriMech 
Company

www.adaptivecorp.com X

Ansys, Inc. www.ansys.com/products/fluids X

Autodesk www.autodesk.com/products/cfd/overview X

BOYD Corporation www.boydcorp.com X X X X X

Cadence www.cadence.com X

Celsia www.celsiainc.com X X X X

CEJN USA www.cejn.us X

CPC Worldwide www.cpcworldwide.com X

Cradle North America Inc. www.cradle-cfd.com/ X

Delta Electronics (Americas) Ltd. www.delta-fan.com/ X

DUPONT www.dupont.com X

Element Six Technologies www.e6.com X

Ellsworth Adhesives www.ellsworth.com X

Ferrotec NORD www.ferrotec-nord.com/ X

FLIR Commercial Systems, Inc. www.flir.com/applications/professional-tools/ X

Fujipoly America Corp www.fujipoly.com/usa X X X

Future Facilities www.futurefacilities.com X X

Henkel www.henkel.com X

Hexagon www.hexagonmi.com/mscsoftware X X

Indium Corporation www.indium.com

International Manufacturing 
Services

www.ims-resistors.com
X

JARO Thermal (NRC Electronics) www.jarothermal.com/ X X X

Knight-Orion www.orionfans.com/ X

Laird Thermal Systems www.lairdthermal.com X

Leader Tech www.leadertechinc.com X

LMB Fans www.lmbfans.com X

https://www.electronics-cooling.com
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THERMAL MANAGEMENT MANUFACTURERS TYPE OF PRODUCT/SERVICE

COMPANY CONTACT INFORMATION - URL
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Malico Inc. www.malico.com X X

Master Bond Inc. www.masterbond.com X

Mentor Graphics www.mentor.com/products/mechanical/ X

Mersen www.mersen.us X X

Nanoramic Laboratories www.nanoramic.com X

NeoGraf Solutions https://neograf.com/ X X

Panasonic https://industrial.panasonic.com/ww/products/thermal-solutions X

Polymer Science www.polymerscience.com X

Rogers Corporation - Advanced 
Connectivity Solutions

www.rogerscorp.com/advanced-electronics-solutions
X X

Rosenberg USA, Inc. www.rosenbergusa.com X

Sanyo Denki America www.sanyodenki.us X

Shin-Etsu MicroSi www.microsi.com/product-category/packaging/ X

Sager Electronics www.sager.com X X X X

Schlegel Electronic Materials www.schlegelemi.com X

Shiu Li Technology Co., LTD www.shiuli.com.tw X

Siemens www.plm.automation.siemens.com/global/en X X

SIKA www.sika.net/en/products/flow-measuring-instruments.html X

Staubli Corporation www.staubli.com X

Techsil www.techsil.co.uk/applications/thermal-management X

T-Global Technology www.tglobal.com/en X

ThermoElectric Cooling America www.thermoelectric.com/ X

TTI, Inc. www.tti.com X X X X

TRAN-TEC www.tran-tec.com X

Universal Sciences www.universal-science.com X X

https://www.electronics-cooling.com
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STATISTICS CORNER: PROBABILITY

INTRODUCTION

I’ve decided to introduce a new column to Electronics 
Cooling Magazine – and it’s not just because I have run 
out of good ideas for “Thermal Facts and Fairy Tales” col-
umns. For 2022, I will publish a series of columns in which 
I try to provide the readers with some insight into the field 
of statistics and a few tools for effective use of statistical 
methods. After a couple decades in industry, I have ob-
served that a number of experienced engineers can be 
intimidated by the topic of statistics – these columns will 
attempt to reduce the level of intimidation. While I have 
been interested in statistics for a few decades now, I don’t 
claim to be an expert. I will do my best in these columns to 
get things as right as I can as well as to make things useful 
and practical.

Statistical analysis is needed because data always have 
some degree of uncertainty; a value that we determine 
from a single measurement, or even set of measurements, 
is not necessarily going to tell us exactly what value we will 
determine with additional measurements. Statistical anal-
ysis uses the mathematics of probability to create tools 
that we can use to deal with that uncertainty. This column 
discusses some aspects of probability concepts to set the 
basis for how the mathematics of probability can be ap-
plied to address uncertainty in statistical analysis.

Any discussion of statistical analysis must include a dis-
cussion on probability. Since the entire field of probability 
and statistical analysis began with gamblers attempting 
to improve their chances of winning, it seems appropriate 
that this discussion on probability begins with a game of 
chance: namely, throwing dice. To begin, I assume that we 
have an infinite amount of time and patience that allows 
us to make a lot of throws, the dice that are not loaded (on 
any given throw they are equally likely to fall with any of 
its sides up), and we are not playing Dungeons and Drag-
ons, so our dice only have six sides. In other words, I will 
use an Excel spreadsheet to simulate throwing dice, I trust 
that the random function is in fact fairly random and that I 
can calculate the result of throwing a die with the equation 
“=ROUNDDOWN(RAND()*6,0)+1”.

Figure (1) shows what fraction of 30,000 throws of 1-6 
dice, as calculated using a simple Excel spreadsheet, had 
a total value of 1 to 36. For a single die, we would expect 
that the values 1 through 6 would each occur approximate-
ly 1/6th of the time – which is about what reasonably close 
to what was found in the calculations. As the number of 
dice included in the throws increases from 1 to 6, the dis-
tributions change from a flat line to a triangle to an increas-
ingly ‘bell shaped curve’.

Figure (2) shows the same data but plots the cumulative 
distribution that show what portion of the throws had a total 
value that was equal to or less than a value of between 1 
and 36. One of the fundamental tenets of probability the-
ory is that the probability of the sum of all possible out-
comes is equal to one, which is both logical and illustrated 
in the figure. In these cumulative distributions, the plots 
transition from a straight line to a ‘tilted S shaped curve’ as 
the number of dice increases from 1 to 6.

Readers with some (any?) background in statistics likely 
can see where this is going – the ‘bell’ and ‘tilted S’ shaped 
curves start to look like the Normal distribution that is wide-
ly used in statistical analysis. The discussion on that topic 
will be in the next column in this series.

Figure 1. Probability Distributions for 30,000 Simulated Dice Throws

Figure 2. Cumulative Distributions for 30,000 Dice Throws

https://www.electronics-cooling.com
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A question that may be asked is “What would happen if we 
had to use actual dice and we didn’t have the time need-
ed to throw them 30,000 times?”.  Again, we can simulate 
that, with results shown for the probability and cumulative 
distributions for sets of only 30 throws of 1 through 6 dice 
in Figure (3) and Figure (4). Figure (3) is best described 
as an incoherent mess: for the ‘1 die’ data, two values 
fell exactly on their expected theoretical value of 16.7% 
while two other values were ~60% higher or lower than 
that. Data for more than one die do not appear to be much 
better behaved.

While the cumulative data for 30 throws, Figure (4), shows 
considerably more jitter than their counterparts for 30,000 
throws (Figure 2), the cumulative distributions appear to be 
much less random than the raw distribution data (Figure 3). 
A comparison of Figure (3) and the curves that show the 
same data in Figure (4) illustrates why some data, such as 
from reliability testing, is often plotted in terms of a cumu-
lative distribution rather than probability. 

If a situation is governed by known physics, it can be 
relatively straightforward to estimate probabilities of a 
single event.  In the case of rolling a single, non-loaded, 
six-sided die, it should seem obvious that there is a 1/6th

chance of any of the six possible outcomes occurring. 
However, probability calculations can start to become 
less intuitive when we begin to consider combinations 
of multiple events. For example, consider the classic 
question that is considered to have been the beginning 
of mathematical analysis of probability – the likelihood 
of rolling a specific value within a specific number of at-
tempts [1]. De Mere, a gambler in the 1600’s, tended to 
win more often than not when he bet that he would roll 
a 6 within four attempts. His reasoning for why he would 
win was that the chances of rolling a 6 in one roll was 

1/6th, so in four rolls his chances should be 4 * 1/6 = 2/3. 
Since that value is larger than 50% and he was playing 
even odds (the loser pays the same amount regardless 
of who it is), he had concluded that it was, on average a 
winning bet. But when he extended the game to two dice 
and gave himself 24 attempts to roll a double 6, which 
by his reasoning should have had the same probability 
(24 * 1/6 * 1/6 = 2/3), he began to lose money. He asked 
the mathematician Blaise Pascal to help him understand 
why his luck had changed.

When calculating probabilities of multiple events, two 
things that should be kept in mind are that the calculat-
ed probability of any outcome must never exceed 100% 
and that it is often useful to think in terms of an event not 
happening. In de Mere’s case, one simply has to consider 
the first point to recognize that his equation was incorrect. 
If the chances of rolling a 6 in four attempts is 2/3, then 
that equation states that the probability of rolling a 6 in 
eight attempts will be 133% (4/3). Clearly, this is not pos-
sible.  To correctly determine the probability of rolling a 6 
in four attempts, one can consider the probability of not
rolling a 6 in one attempt and multiply that times itself four 
times.  The probability of not rolling a 6 is (5/6 = 83.3%), 
so the probability of not rolling a 6 in four attempts is (5/6)4

= 48.2%. Since the probability of not rolling a 6 in those 
four attempts plus the probability of rolling a 6 in the same 
attempts must equal 100%, the probability of rolling a 6 in 
four attempts is 100%-48.2% = 51.8%. This probability is 
greater than 50%, so with even odds it makes sense that 
de Mere was coming out ahead. On the other hand, when 
using the same approach the probability of rolling double 
6’s in 24 attempts can be calculated as 1 – (35/36)24 = 
49.1%, which is less than 50% and therefore not a good 
bet at even odds.

Figure 3. Probability Distributions for 30 Simulated Dice Throws Figure 4. Cumulative Distributions for 30 Dice Throws
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SUMMARY

Probability theory is fascinating and, even the most curso-
ry overview of it, encompasses far more than can be ad-
dressed in this short article. This is particularly true if one 
considers the topic of conditional probability [2], in which 
the probability of an event depends on another probabilis-
tic event. The example described in this article illustrates 
that, in a reasonably well-behaved population of data, the 
effects of measurement variability tend to wash out and 
lead us to familiar-looking distributions. But it may require 
a lot of samples from that population to get there. If we 
only look at a small portion of the population, the distribu-
tion won’t necessarily appear as a nice bell shape.  

Future articles in this series will discuss some of the 
statistical approaches used to extract useful information 
and understand the distribution characteristics of data 
sets that are smaller than 30,000 that led to the smooth 
curves shown in Figure (1) and (2). Topics will include dif-
ferent parameters used to  characterize a data set, what 
confidence we have regarding the uncertainty of those 
parameters, different models for distributions and how to 
use them, how to determine if one set of data is different 
from another, how many samples do we need for a given 
test, etc.

References
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STATISTICS CORNER: NORMAL DISTRIBUTION

The previous column in this series [1] discussed statistical 
probability and showed that the plot of the probability of 
a given value occurring within a population can look like 
a hill in which there is a peak in the middle that tapers off 
to increasingly smaller slopes on each side.  The example 
in that column referred to the scores produced by shaking 
a number of dice and the ‘hilly’ plot was described with 
the  more common  term of ‘bell shaped curve’.  The pur-
pose of establishing a probability distribution to describe 
a population of data with uncertainty is that it provides a 
mathematical framework for dealing with that uncertainty  
- if a reasonable mathematical model of the distribution 
curve can be defined. As we will see in subsequent col-
umns, many different models for probability distributions 
exist; the selection of the correct model depends on char-
acteristics of the population and what data are available 
for analysis.

This column focuses on the probability model that is 
most widely used and most recognized: the Gaussian, 
or normal, distribution. The normal distribution, as writ-
ten in terms of a probability density function is shown in
Equation {1}:

Equation {1} allows one to estimate the probability of a 
given value, x, occurring in a population that is defined 
with the two parameters µ and σ. While the normal dis-
tribution equation itself may not be familiar to everyone, 
the terms µ and σ should be recognizable to anyone who 
deals with data: µ is the mean (or average) value and σ is 
the standard deviation. If the mean and standard deviation 
of a population are known, the probability that a randomly 
selected member of that population will have a value of x 
can be calculated with Equation {1}. Or, if you are like me 
and rely on spreadsheets to do most of your calculations, 
you can use the function @norm.dist(x, µ, σ, false)1.

The mean2 and standard deviations can be calculated for 
a set of N samples, x1, x2, …xn, by:

1  The ‘false’ in this equation specifies that the probability distribution (a bell-shaped curve that goes to zero as x goes to infinity) 
is calculated. If ‘true’ is used instead, the function returns the cumulative distribution (an S shaped curve that goes to 1 as x goes 
to infinity)
2 Equation {2} defines the arithmetic mean, which is the same as the arithmetic average. The more generic terms mean and 
average are often used interchangeably but can refer to different definitions.

Equations {2} and {3} include the subscript ‘s’ for the mean 
and standard deviation as a reminder that the values de-
termined from a sample (the set of data drawn from a 
population) are not exactly equal to those for the entire 
population (all possible elements). Traditionally, the mean 
and statistical deviation of a sample are written as x̅ and 
s, respectively. A future column in this series will discuss 
how to use the values of µs and σs, also known as x̅ and 
s, to determine a range in which we can be confident that 
the population mean, µ, actually lies. Note that the mean 
and standard deviation of a data set can be calculated in 
a spreadsheet with the functions @average(‘data’) and @
stdev(‘data’) respectively, where ‘data’ refers to the cells 
that contain the data.

Our familiarity with the term ‘average’ can lead to its oc-
casional misuse, which can be avoided if we keep its re-
lationship to the normal distribution in mind. The version 
of the classic illustration of a misuse of the term ‘average’ 
is the example of 9 people, who all have a net worth of 
$500,000, are sitting in a bar. In walks the founder of a 
“multinational conglomerate technology company that fo-
cuses on e-commerce, cloud computing, digital streaming, 
and artificial intelligence” who has a net worth of $140B.  
Using Equation {2}, the average net worth of the individ-
uals in the bar suddenly increases to $14B, which may 
be mathematically correct but not physically relevant. The 
primary basis for this discrepancy is the fact that the pop-
ulation of the 10 individuals in the bar is not representative 
of a normal distribution. In cases like this, the median may 
be a more appropriate parameter for reporting a typical 
value. The median is the middle value in a ranked list of 
the sample set such that an equal number of values are 
greater than and less than it (the spreadsheet function for 
calculating median is @median(‘data’). When the mean 
and median of a data set are substantially different, such 
as in the aforementioned example of people in the bar, 
one should suspect that the sample set is not normally 
distributed.

A fundamental strength and justification for utilizing the 
normal distribution is the Central Limit Theorem, which 
shows that when multiple, independent random variables 
are added, the result tends towards a normal distribution 
– even if the variables themselves are not normally dis-
tributed (see for example reference [2]). Reference [1] 
discussed the results of throwing dice, beginning with the 
assumption that a single die is ‘fair’ such that the proba-
bility of it showing any particular value is equal to the in-
verse of the number of sides on the die (i.e., 1/6th for a 
six sided die). The distribution of scores that result from 
throwing that one die is certainly not normal; it would be a 

{1}

{3}{2}
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straight line with equal probability of 16.7% for each of the 
six values. With two die, the distribution had a triangular 
shape and, as the number of die increased, the distribution 
looked more and more like a bell shaped curve.

Figure (1) shows simulated results for throwing 6 six-sid-
ed die 100 and 5000 times. The larger number of throws 
leads to a more well-behaved distribution of results (red 
bars appear to be more ‘bell shaped’). However, both data 
sets produce very similar normal distributions with mean 
values of ~21 and standard deviations of 4.2. This illus-
trates the power of the normal distribution and the results 
of the central limit theorem. Even when we have results 
from a small data set that in of itself does not appear to be 
normally distributed (have a ‘clean’ bell shaped curve), if 
the data were drawn from a normal distribution there is a 
good chance that they can be used to accurately estimate 
the fundamental characteristics of that population. 

The normal distribution provides a straightforward meth-
od for using measurable characteristics of a data set (the 
mean and standard deviation of the sample) to estimate 
the probabilities of future measurements falling within a 
prescribed range of values (related to the properties of 
the entire population).

This is incredibly useful in that it allows us to perform 
tasks such as:

• Determining how many samples must be measured 
to have confidence that a population has been adequate-
ly characterized.

• Comparing different data sets and decide with they 
are from the same population or not (e.g. to determine 
if differences in their mean values are ‘statistically signif-
icant’).

•  Deciding whether a value that seems to be an outlier is 
likely to be from the population that we are evaluating or if 
it is due to a factor such as a measurement error.

• Defining how much confidence we should have in a 
curve fit we generate from a data set.

These types of practical tools are all topics that will be 
discussed in future columns, now that these foundational 
topics of probability and distributions have been covered.

Figure 1. Simulated results for throwing 6 six-sided die
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STATISTICS CORNER: CONFIDENCE INTERVALS

BASIS OF A VARIETY OF STATISTICAL ANALYSES

The previous articles in this series [1, 2] described how the 
mean and standard deviations of a set of data are calcu-
lated and how they can be used to estimate the character-
istics of a population using the normal distribution. Since 
measured data typically represents only a subset of an 
entire population, one should recognize that the estimated 
mean and standard deviation values determined from a 
sample set are not likely to be exactly equal to the true 
values of the entire population. In other words, when we 
calculate the mean, i.e., average, of a data set, we should 
recognize that there is actually a range of values in which 
the true population mean lies – and the size of that range 
depends on the confidence level that we assign to our es-
timate. This article describes a process that can be used 
to determine that range as a function of the number of data 
points and confidence level. More generally, this outlines 
the overall process for linking probability distributions with 
confidence levels that is the basis of a variety of statistical 
analyses.

Figure (1) shows an example of a normal distribution in 
which the mean value is 8 and the standard deviation is 
0.75. Two lines are included in this plot: the probability 
distribution corresponds to the probability of any specific 
value occurring within the population while the cumulative 
distribution indicates what portion of the population is less 
than or equal to a given value3. The cumulative distribution 
curve is equal to the area under the curve of the probability 
distribution.

3  To use Excel to calculate the values of these curves, use the function =norm.dist(x, mean, stdev, dist), where x is the x-axis 
value, mean and stdev are the mean and standard deviation of the population respectively, and ‘dist’ is FALSE for the probability 
distribution and TRUE for the cumulative distribution.
4 This value can be calculated with Excel in two different ways (at least). The simple approach is the function =norm.
dist(9,8,0.75,TRUE). Another approach is to use the Z-value with a standard normal distribution, which has a mean of 0 and 
standard deviation of 1. Thus, the function would be =norm.dist(1.33,0,1,TRUE). Both of these functions will return the same 
value of 0.9088.

Z-value is defined as the difference of a value from the 
mean, normalized by the standard deviation. For exam-
ple, with the mean of 8 and standard deviation of 0.75, a 
measurement of 9 would have a Z-value of (9-8)/0.75 = 
1.33. The cumulative normal distribution for this value is 
90.9%4; in other words, 90.9% of the population with a 
normal distribution would have a Z-value that is less than 
or equal to 1.33. This is illustrated in Figure (1) as the 
area under the cumulative probability curve for values of 
9 and below.

As mentioned previously, we don’t generally know the 
true mean and standard deviation of an entire population 
because we only make measurements of a subset of it.  
The larger the subset (the more samples we use in mak-
ing our estimates), the more accurate our estimates of 
the true values should be. When we use a small sample 
size in an analysis, we can account for the additional un-
certainty due to sample size by ‘flattening’ the bell curve 
of the standard normal distribution and increasing the 
size of the ‘tails’ (the areas under the curve that are far 
from the midpoint) using the Student t-distribution.

The t-distribution looks very similar to a normal distribu-
tion, but its specific shape depends on the number of de-
grees of freedom. The degrees of freedom (DoF) for a 
sample set corresponds to the number of independent 
values used in the analysis. In this case, we can consider 
a data set of n data point to be comprised of n-1 indepen-
dent values; the difference between the sample size and 
DoF is due to the use of the data points to estimate the 
population mean [3]. Thus, one data point is not indepen-
dent and the other data points can be used to assess to 
assess the uncertainty. Figure (2) shows t-distributions 
for 2, 4 and 10 DoF and compares them to the normal 
distribution, again for a mean of 8 and standard deviation 
of 0.75. As the DoF increases, the t-distribution converg-
es to the normal distribution; above 30 DoF, the t-distribu-
tion is virtually identical to the normal distribution.

Figure 1. Normal distribution for mean of 8 and standard deviation of 0.75
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THE CENTRAL LIMIT THEOREM

With this baseline information on distributions estab-
lished, we can now describe how they are used to define 
what range of values the true mean of a population is 
based on a small number of measurements. The Cen-
tral Limit Theorem is a critical component in establishing 
this. The Central Limit Theorem states that a population 
of terms (X-µ)/(σ/n1/2) tends towards being normally dis-
tributed, where X is a value in the population, µ is the 
mean, σ is the standard deviation and n is the number of 
samples used to estimate the population characteristics.  
This applies not only to the data, but also to the distribu-
tion that we use to assess our confidence in the mean 
that is calculated from a sample set.

5  Or we can use the Excel function =norm.dist(-0.943,0,1,true) if that seems easier…

For example, assume that 50 measurements of a heat 
sink show that its thermal resistance is 8°C/W with a 
standard deviation of 0.75°C/W. How confident can we be 
that the actual population mean is somewhere between 
7.9 and 8.1°C/W? Using the Central Limit Theorem, we 
calculate a test statistic as (7.9-8)/(0.75/501/2) = -0.943.  
We can look this value up on a standardized normal dis-
tribution table, which shows that 17.3% of a normal pop-
ulation that has a mean of 0 and standard deviation of 
1 will have a value of -0.943 or less5. Since the normal 
distribution is symmetric, we will also find that 17.3% of 
the population will have value of 0.943 or greater. Thus, 
34.6% of the normal distribution is either less than 7.9 or 
greater than 8.1 and there is a confidence band of ~65% 
that the true mean is between 7.9 and 8.1.

Typically, we are more interested in conducting the re-
verse analysis – namely, what range of values corre-
sponds to a prescribed confidence band. Also, we may 
not have the luxury to have a sufficient number of mea-
surements (more than 30) to justify using a standard 
normal distribution, rather than a t-distribution, in our cal-
culations. The steps for determining the range of mean 
values correspond to a specified confidence band are 
shown in Table (1). This table includes example calcu-
lations for testing on ten heat sinks that again showed a 
mean thermal resistance of 8°C/W with a standard devia-
tion of 0.75°C/W. The goal of the analysis is to determine 
the range of values that we can be 90% confident that the 
true mean lies within.

Figure (3) shows the 90% confidence intervals calculated 
for the t- and normal distributions for data with the same 
mean and standard deviations, but different sample sizes. 
As the sample size increases, the lines for the confidence 
intervals come converge. At small sample sizes, the con-
fidence bands that are calculated using the more appro-
priate t-distribution are much wider than those calculated 
using the standard normal distribution. In general, it may 
be questionable that an extremely small sample size of 
2-3 samples is necessarily representative of a population

# Step Example (with Excel Functions)

1 Measure n samples and calculate the nominal mean,   , and standard deviation,   n = 10,    = 8°C/W,    = 0.75°C/W

2
Define confidence interval, C.I. that defines the range of means, leading to the size 
of the tails outside the C.I.,   /2

C.I. = 90%; two tails (one on each side of the distribution) => area 
in each tail is (1-0.9)/2 = α /2 = 0.05

3
Calculate the inverse t-distribution for the tail size and degrees of freedom, t  /2 t  /2 = t.inv((1-    /2),(10-1)) = t.inv(0.95,9) = 1.833 

t.inv inputs: probability of being outside the tail (1-    /2),  DoF 
(sample size – 1)

4
Calculate the distance from the lower limit of the confidence interval to the mean,       = t    /2 *   / n1/2

    =1.833 * 0.75 / sqrt(10) = 0.43

5
Calculate the range that corresponds to the confidence interval =    ±   Confidence interval: 8 - 0.43 to 8 + 0.43 

C.I. = 7.57 to 8.43°C/W

Figure 2. Normal and t-distributions for mean of 80 and standard deviation
of 0.75

Table 1. Steps for determining the range of mean values corresponding to a
specified confidence band
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Figure 3. Confidence bands calculated for different sample sizes of heat sink 
resistance

 – and that small of a sample size also leads to an un-
comfortably large confidence interval. But when dealing 
with typical sample populations with 5-20 measurements, 
the t-distribution provides a reasonable approach for es-
timating the confidence interval and can be evaluated for 
whether it is likely from a normal distribution (a discus-
sion for a future article). When the sample size is greater 
than 30, the normal distribution can be used to assess 
the confidence interval. However, since the t-distribution 
converges to the normal distribution at large sample siz-
es, one can continue to use the t-distribution even with 
larger populations. So in general, if these equations are 
incorporated into a tool such as Excel, it is appropriate 
to use the t-distribution even for very large sample sizes.

SUMMARY

In summary, the goal of the first three articles in this se-
ries has been to provide a sufficient background to allow 
readers to better understand future articles aimed at pro-
viding practical statistical analysis approaches. Hopefully, 
the articles did not achieve a ‘worst of both worlds’ status 
in which they included more theory than engineers might 
want to see and less theory than statisticians would ex-
pect. Regardless of whether they achieved that or not, 
with a basic statistical foundation in place we can now 
move on in future articles to describe tools and analysis 
methods for solving the types of statistical problems that 
engineers may encounter.
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STATISTICS CORNER: COMPARING POPULATIONS

INTRODUCTION

Previous articles in this series described the normal dis-
tribution and how it is used to relate probability and con-
fidence levels [1, 2]. A practical application of the use of 
the confidence interval was to describe how to determine 
the range of values in which the true mean of a popula-
tion falls within, based on the mean and standard devia-
tion calculated from a set of samples drawn from the pop-
ulation. This range depends on the confidence level that 
is selected for the analysis and the number of samples 
used to estimate the population. The fewer samples or 
the higher the confidence level that is selected, the wider 
the range in which the true mean value may lie.

COMPARING POPULATIONS

This article discusses how the confidence band concept 
is extended to compare different sample sets to deter-
mine, within a set confidence level, whether the two sam-
ple sets have the same mean. This provides a statistically 
established method to determine if two data sets are dif-
ferent, thereby demonstrating whether a treatment, de-
sign change, etc., lead to an improvement.

The following example illustrates the overall procedure 
for comparing two populations to determine whether they 
are different. Somewhat rudimentary testing6 was used to 
evaluate a natural convection heat sink in the three differ-
ent orientations illustrated in Figure (1). In the Horizontal 
orientation, the base of the heat sink was aligned with 
the direction of gravity and the fins were perpendicular 
to gravity. In the Vertical orientation, the heat sink base 
was again aligned with gravity, but the heat sink was ro-
tated 90° such that the fins were parallel to gravity. In 
the Flat orientation, the heat sink faced upwards with the 
base perpendicular to the direction of gravity. Table (1) 

shows individual thermal resistances calculated from dif-
ferent tests and calculated values for the number of data 
points, average, and standard deviation for each heat 
sink orientation. In this testing, power was dissipated 
from a heater attached to the back of the heat sink. The 
average heat sink temperature was determined with four 
thermocouples attached to the heat sink and the thermal 
resistances were calculated by dividing the temperature 
difference (average heat sink temperature minus am-
bient air temperature) by the heater power dissipation. 
Tests were repeated over a number of days with different 
heater powers and with the orientations relative to gravity 
randomized. Testing did not control for the effects of radi-
ation, minor room drafts, heat losses from the back of the 
heat sink, etc. Therefore, the data shown in Table (1) are 
primarily useful for comparing the effects of orientation, 
and do not represent a controlled investigation to deter-
mine the precise heat sink resistances. While testing was 
conducted over a broad range of power dissipations, the 

6 Note the rubber bands and packing foam used in the test setup.

data in Table (1) are limited to rest data for power dissi-
pation in the range of 20-25W.

Figure 1. Heat sink orientations for natural convection testing

Table 1. Heat sink thermal resistance test data

Calculated Thermal
Resistance Values
(K/W)

Horizontal Vertical Flat

3.75 1.82 1.93

3.80 1.83 1.96

3.82 1.85 1.97

3.82 1.85 2.00

3.94 1.90 2.01

1.91 2.01

1.92 2.05

2.13* 2.08

2.08

Sample Size 5 8 9

Average 3.82 1.90 2.01

St. Deviation 0.0676 0.1003 0.0541
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Based on the average values of the thermal resistances, 
it appears that the Horizontal orientation has a signifi-
cantly higher thermal resistance (of 3.82 K/W) than the 
Vertical orientation (resistance of 1.88 K/W) and the Flat 
orientation (2.01 K/W). The questions that we will attempt 
to answer in this analysis are 1) what is our confidence 
that the Horizontal thermal resistance is actually different 
from the other orientations and 2) is there a statistical-
ly significant difference in the thermal resistances of the 
Vertical and Flat heat sink orientations?

Using the procedure described in [1], we can use the cal-
culated mean, standard deviation and sample size to de-
termine the range in which the true mean lies, for a given 
confidence level, of each set of measurements. For ex-
ample, with the horizontal data, in which 5 measurements 
produced an average of 3.82 and standard deviation of 
0.676, we can be 95% confident that the true mean falls 
between 3.74 and 3.917. The parameters used to calculate 
the confidence intervals and the ranges for the 95% con-
fidence interval for the mean thermal resistance for each 
of the three heat sink orientations are shown in Table (2).

The results in Table (2) indicate that we can be more than 
95% confident that the thermal resistance of the heat sink 
in the Horizontal orientation is higher than in the other two 
orientations, since there is no overlap between its range 
and the others (3.74 is greater than both 1.98 and 2.05).  
However, with this approach and using a 95% confidence 
level, indicates the Vertical and Flat thermal resistances 
are not statistically different since there is a slight overlap 
in their ranges (1.97 falls between 1.82 and 1.98).

This analysis can be improved by recognizing that the 
size of the range for a given confidence level is due to a 
combination of the standard deviations and the number 
of samples of each test set. Even if the means of two pop-
ulations are different, their standard deviations may be

7 Calculation method: n = 5,    = 3.824,     = 0.06763, d.f. = n-1 = 4.  95% confidence for a two tailed distribution 
=>     /2 = (1-0/95)/2 = 0.025; t-statistic in Excel is t0.025 = abs(t.inv(   /2, d.f.) = abs(t.inv(0.025, 4) = 2.7764
     = t0.025*    /n1/2 = 2.7764*0.06763/51/2 = 0.084, mean range =     ±     = 3.824 - 0.084 to 3.824 + 0.084 = 3.74 to 3.91

similar enough that we can ‘pool’ the data and increase 
the effective sample size by accounting for the number of 
samples in each data set.

We can use the F-distribution to determine whether we 
can pool data to increase the effective sample size. With-
out going into the detail that it deserves, the F-distribu-
tion is a statistical distribution that can tell us the prob-
ability that the variances, i.e., standard deviations, of 
two populations are different – in a similar manner that 
the t-distribution indicates the probability that the means 
of two populations are different. We can use the Excel 
function @f.test(array1, array2) to determine whether the 
standard deviations of two populations are different, and 
therefore that data can be pooled to determine the con-
fidence range for the mean. The arrays in that function 
are the two sets of measurements under consideration 
and the function returns the probability that the standard 
deviations are different.

In comparing the Vertical and Flat data, the F-test function 
returns a value of 10.5%. Since this is greater than 5%, 
we cannot conclude (at a 95% confidence level) that the 
variances (standard deviations) of the two populations 
are different. Therefore, we can pool the data in applying 
the t-test that determines whether the means of the two 
population are different. The pooled standard deviation, 
σp, can be calculated using the estimated standard de-
viations (σ) and sample sizes (n) of each sample set, as 
shown in Equation {1} [3].

The pooled standard deviation of the Vertical and Flat 
data is calculated to be 0.006262. This is then be used to 
calculate the test statistic, T, for the pooled data, which is 
determined with Equation {2}:

For the pooled Vertical and Flat data, this is calculated 
to be 2.8259. This value is then compared to the t-val-
ue that is calculated for the selected confidence level 
and the total degrees of freedom, which is the sum of 
the samples from the two data sets minus 2 (since one 
degree of freedom was ‘consumed’ in calculating each of 
the two means). For a 95% confidence level and a two 
tailed distribution, the input parameter for the t-test is α/2 
= (1-0.95)/2 = 0.025. In Excel, a value of α/2 that is less 
the 0.5 will return a negative number, so the t-value for 

Horizontal Vertical Flat

Distribution
Statistics

 # samples, n 5 8 9

mean, µ 3.824 1.901 2.010

st dev, σ 0.06763 0.1003 0.05414

Parameters
for 95%
Confidence

t0.025 2.776 2.365 2.306

delta, ∆ 0.0840 0.0839 0.0416

Range in Which
Mean Falls

min 3.74 1.82 1.97

max 3.91 1.98 2.05

{1}

{2}

Table 2. Terms used to determine 95% confidence intervals for thermal 
resistance of each orientation
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the pooled sample can be calculated with =-t.inv(0.025, 
(8+9-2)) = 2.131448. Since this value is less than the test 
statistic of 2.8259, we can be 95% confident that average 
thermal resistance for the Vertical heat sink is different 
from the Flat heat sink. If we repeat the analysis with a 
confidence level of 98.72%, the t-statistic is equal to the 
T-value of 2.8259. If one prefers to type in fewer equa-
tions, a simpler approach to reach the same conclusion is 
to use the function =1 – t.test(array1, array2, 2, 2), where 
the two arrays are the two sets of data for the Vertical and 
Flat orientations. In this function, the first 2 indicates that 
the distribution is two-tailed, and the second 2 indicates 
that the two data sets are homoscedastic (with the same 
variance, as determined by the F-test). This function, with 
the two sets of data returns a value of 0.9872; since this 
value is larger than the 95% we can therefore conclude 
with a 95% confidence level that the thermal resistances 
for the Flat and Vertical orientations are different.

If the F-test finds that the variance of the data sets ae un-
equal, the Smith-Satterthwaite procedure [3] can be used 
to estimate an effective number of degrees of freedom in 
the pooled data (npooled) using Equation {3}

where the function rounddown<> rounds the result down 
to the integer value.

8  Alternatively, Excel will also return the correct positive value if we use 1-     /2: =t.inv(0.975,15) = 2.13144.

SUMMARY

The t-test provides a method for estimating a range that 
we can be confident that a population mean falls with-
in, based on a limited sample size. This article described 
how that can be extended to compare two data sets to 
determine whether the populations have different mean 
values. The F-test provides a similar method for deter-
mining whether the variances of two populations are the 
same in order to justify whether to data can pooled to-
gether to increase the effective sample size and thereby 
increase the confidence of conclusions.

AUTHOR NOTES

1. Readers with a reasonable background in statistics 
may have noticed that I have been quite careless in my 
treatment of the mean and standard deviation of a popu-
lation. A rigorous approach would be much more careful 
to differentiate between actual quantities relevant for the 
population (the true mean and standard deviation) com-
pared to the estimated values based on the subset of the 
population that is sampled. The goal of these article is 
to provide reasonably simple tools for drawing statistical 
conclusions without diving too far into the statistical de-
tails. I hope that my attempts to minimize confusion that 
can be generated by additional notations and parameters 
do not actually increase confusion due to a lack of suffi-
cient context.

2. I slightly modified the data set in order to better demon-
strate the impact of pooling data sets. The highest thermal 
resistance value for the Vertical orientation (2.13, which 
is indicated with an asterisk) was actually measured to 
be 1.93 in testing. It is left to the interested reader to cal-
culate how the use of the correct value affects the overall 
confidence level.
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STATISTICS CORNER: REGRESSION ANALYSIS

Throughout their careers, engineers and scientists are all 
likely to encounter and utilize the results of regression 
analysis, which is “a set of processes for estimating the 
relationships between a dependent variable and one or 
more independent variables” [1]. In other words, regres-
sion analysis uses a set of data to estimate a relationship 
between the independent ‘predictor(s)’ and a ‘response’ 
or ’output’ parameter. In its simplest form, a response, y, 
may be linearly related to a single predictor, x, in a re-
lationship of y = mx + b. Regression analysis provides 
a method for estimating values of the constants m (the 
slope) and b (the intercept).

Regression analysis can be accomplished with differ-
ent approaches that could include, at least theoretically, 
a piece of wood, drywall screws, rubber bands and a 
welding rod9, as shown in Figure (1). In this regression 
analysis, screws were put into x-y locations of a graph 
drawn on the wood and rubber bands between the weld-
ing rod and the screws hold the welding rod in an equi-
librium position that allow the slope and the intercept to 
be determined.

A slightly easier and certainly more accurate approach 
for conducting a regression analysis is the use of Least 
Squares. In this approach, rather than the location of the 
welding rod that leads to a balance in the forces gener-
ated by the rubber bands in Figure (1), the ‘welding rod’ 
corresponds to the straight line that produces the small-
est value of E, where E is the sum of squares of the dis-
tance in the y-direction between the line and each data 
point. The equations for calculating the coefficients for a 
least-squares estimate for linear regression with a single 
predictor, i.e., y = mx + b, are shown in Equations {1} and 
{2} [2]:

9  In other words, random stuff that I had laying around my house on a weekend.

where xi and yi are the x-y values for the ith data point 
and x̅ and y̅ are the mean values of the x and y data re-
spectively. The coefficient of determination, R2, is anoth-
er important parameter in regression analysis. This term 
describes how well the regression analysis describes the 
data: an R2 of 1 indicates a perfect fit while a value of 
0 indicates that the regression analysis does not predict 
the response from the input data. R2 is calculated using 
Equation {3}:

where SSE is known as the sum of squares error.

Equations {1-3} are implemented in any software that 
does regression analysis. For example, several methods 
can be used in Microsoft Excel to determine regression 
coefficients. Methods that this author has used are sum-
marized in Figure (2). Figure (3) shows an example of an 
Excel regression analysis, using Option 1 as described 
in Figure (2), for the x-y values that were used in the 
demonstration illustrated in Figure (1).

For only one independent variable:

Option 1. Create an x-y chart of the data being ana-
lyzed, right click on the data the chart, select “Add 
Trendline…”, check boxes for “Display Equation on 
Chart” and “Display R-squared on chart”

Option 2. Enter the functions“=slope(y-values, 
x-values)”, “=intercept(y-values,x-values)”, and/or 
“=rsq(y-values, x-values)”, where ‘x-values’ and ‘y-val-
ues’ are cells that contain the x and y values of the data 
set being analyzed.

For one or more independent variables (multiple 

x’s):

Option 3. Highlight a suitable range of cells, type in the 
function “=linest(y-values, x-values, true, true)”, and in-
stead of hitting ‘Enter’ hit Control-Shift-Enter, because 
this is an array formula. Relevant statistics are gener-
ated in the array (the correct size of the array depends 
on how many sets of x-values are selected) (note, the 
configuration of the output parameters does not corre-
spond with the input configuration, so it is recommend-
ed that before using this function for the first time, they 
generate a dummy set of data with known coefficients 
so that they can know exactly where the important out-
put values are in the generated array).

Figure 1. Regression analysis done the hard way

{1}

{2}

{3}
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Option 4.  Add the Data Analysis Add-in, go to the ‘Data’ 
tab, select ‘Data Analysis’ to open a pick list of data anal-
ysis tools, select ‘Regression’ and define inputs in the di-
alogue box that is displayed.

Option 5: Guess coefficients for each independent vari-
able and put them into a range of cells.  Calculate the 
value of y using these coefficients for each set of x-values 
and sum the error for each data point, i.e., the square 
of the difference between measured y and calculated y.  
Then use the Excel Solver Add-in to minimize that sum by 
varying coefficients.  Depending on how good the initial 
guessed coefficient values are and the nature of the mod-
eled regression curve, this approach may converge to the 
correct values or may spiral off to ‘infinity and beyond’. 

A previous column in this series described how probabil-
ity distribution concepts could be used to a confidence 
interval for a limited set of data. When measurements are 
used to determine an average value, we can determine 
what range of values the actual average of the falls within 
a range to a given confidence level [3]. The confidence 
interval depends on the variance of the measurements 
(standard deviation) and the number of measurements 
made. The t-distribution was used in the calculation of 
the range.

In the same manner that we estimate a mean value within 
a confidence interval, confidence intervals also apply to 
the coefficients (slope and intercept) determined through 
regression analysis. These intervals are determined with 
Equations {4} and {5} [2]:

Where tα/2 is the t-distribution corresponding to the confi-
dence level and degrees of freedom, n is the number of 
data points, ∑x2 is the sum of all x values, 

Another confidence interval of interest is the value of y 
that is predicted by the regression analysis for any x-val-
ue. This confidence interval accounts for the combined 
effects of the confidence bands associated with the slope 
and intercept and is shown in Equation {6}.

Where A = 0 if we are estimating the confidence band on 
the average y value for the population tested and A = 1 
for an individual item.

Data from the heat sink assessment discussed in [4] will 
illustrate how these equations are used to determine con-
fidence intervals of regression coefficients. A flat plate 
heat sink was tested in still air under a range of orien-
tations relative to gravity. Results for ~20W dissipation 
values for a range of angles are shown in Figure 4, which 
includes regression analysis results with R2 of ~86%.  
While this R2 value is reasonable, the suitability of the fit 
is probably somewhat questionable: the values at the low 
and high range of measurements are above the fit while 
those in the middle are below. This is often an indication 
that the regression analysis may not be capturing the fun-
damental physics that influence the results.

Figure 2. Methods for Regression Analysis in Excel

Figure 3. Excel-based regression analysis for same data as Figure 1

{5}

{6}

{4}

Figure 4. Test data for natural convection heat sink at different orientations
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When assessing the results in terms of the physics that 
cause the heat sink thermal resistance to change with 
its orientation relative to gravity, it seems reasonable that 
the buoyant flow that drives natural convection will de-
pend on the cosine of the orientation angle, rather than 
the angle itself. Figure (5) shows the resulting correlation 
between the thermal resistance as a function of the co-
sine of its angle relative to gravity. This appears to im-
prove the fit substantially; the R2 increases from 86% to 
95%. Given this improvement in the fit, the subsequent 
analysis assumes that the cosine of the angle, rather 
than the angle itself, is the correct independent variable 
for regression analysis.

Table (1) shows the eleven data points used to gener-
ate the previous plots while the values of the parameters 
used in, or resulting from, the regression analysis are 
shown in Table (2) along with brief descriptions of how 
they are calculated.

The confidence intervals for the regression coefficients 
depend on what confidence level is defined. For exam-
ple, for a 95% confidence level, the t-statistic would be 
calculated for a probability of 0.975 (1-(1-0.95)/2) and 9 
degrees of freedom (sample size of 11 minus 2) as 2.262.  
The confidence bands for the coefficients are then:

Since the nominal slope and intercept are -0.954 and 
2.426, respectively, we can be 95% confident that the 
slope is between -1.123 and -0.786 (i.e., -0.954±0.169) 
and the intercept is between 2.317 and 2.536. Using 
Equation {6}, we can determine the confidence bands for 
the population and individual measurements, which are 
plotted in Figure (6).

Figure 5. Natural convection heat sink resistance vs. cosine of orientation

Table 1. Measured data 

θ (deg) cos (θ) Rth (K/W)

0 1.000 1.575

45 0.707 1.711

60 0.500 1.835

30 0.866 1.591

27 0.891 1.594

75 0.259 2.069

90 0.000 2.380

0 1.000 1.472

72 0.309 2.074

80 0.174 2.383

90 0.000 2.561

Table 2. Calculated parameters for the regression analysis confidence interval

Parameter Value Equation

n 11 number of data points

    x 0.519 average of all x values

    y 1.931 average of all y values

Sxx 1.527 sum of each value of (x-    x)2

Syy 1.467 sum of each value of (y-    y)2

Sxy -1.457 sum of each value of (x-    x)* (y-    y)

     x2 4.487 sum of each value of x2

m -0.954 = Sxy / Sxx

b 2.426 =    y - m*    x

SSE 0.0764 sum of each value of (y - b -mx)2

R2 94.8% = (Syy - SSE)/ Syy

S 0.0921 = SSE/(n-2)
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SUMMARY

Conducting a regression analysis can be a relatively 
straightforward process. Tools are widely available, or the 
basic equations can easily be implemented into a spread-
sheet, to determine a curve fit between independent and 
dependent variables. One needs to keep in mind, howev-
er, that these tools will provide a curve fit, regardless of 
whether the correct variables have been input to them. As 
in this case, recognizing the physics of the situation led 
to a change in the independent variable so that a better 

fit was obtained. Also, this article described how to calcu-
late confidence bands for the coefficients resulting from a 
regression analysis, since one must recognize that those 
values are merely estimates.

Figure 6. Confidence bands for regression analysis of heat sink
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STATISTICS CORNER: WEIBULL DISTRIBUTION

A little over a pandemic ago, the first article in this se-
ries on statistical analysis mentioned that a fundamental 
aspect of statistics is that one assumes a mathematical 
model that describes the distribution of a data set and 
then uses that model to estimate the probability that a giv-
en value or set of values will occur [1]. This allows us, for 
example, to estimate whether two sets of data are from 
the same underlying population or if they are statistically 
different. The statistical analyses discussed thus far have 
primarily assumed that a population has a normal dis-
tribution. However, there certainly are other distributions 
that can, and should, be used for different types of data. 
Table (1) lists a few common statistical distributions with 
brief descriptions and examples of how they are applied. 

Lognormal and Weibull distributions are often applied to 
analyze reliability data for situations such as the wear out 
of solder joints that have been subjected to multiple ther-
mal cycles. As a reminder, the formula for the probability 
of a given value of x in a normal distribution is shown in 
Equation {1a}. The mean, µ, and standard deviation, σ, 
for a population x can be easily calculated. Therefore, the 
probability distribution, f(x), of the normal distribution can 
be calculated directly with Equation {1a}. The cumulative 
distribution, F(x), which is the area under the probability 
distribution curve to the left of a value x, is found by inte-
grating the probability distribution, as shown in Equation 

{1b}.

10  Interested readers can find the Weibull probability distribution function from any number of sources. Since it is somewhat less 
intuitive than the cumulative distribution and not really relevant to the point being made in this article, I’m not including it here.

The lognormal distribution is also calculated using 
Equations {1}, except that the values of x that are used 
to calculate µ, σ, and f are all the natural logs of the pop-
ulation values.

The Weibull distribution is defined such that its cumula-
tive distribution10 is calculated as shown in Equation {2}. 

As with the probability distribution of the normal distribu-
tion, the cumulative Weibull distribution can be directly 
calculated for any value of x once the two terms that char-
acterize the distribution are known. Instead of the mean 
and standard deviation used in the normal distribution, 
the Weibull distribution uses the characteristic life (also 
known as the scale parameter), θ, and the shape param-
eter, β. Physically, these two terms are similar to their 
normal distribution counterparts: the characteristic life is 
analogous to the mean, but instead of indicating the 50% 
failure point (for failure data), θ corresponds to the point at 
which 63.2% (1-1/e) of the population would fail. Because 
of this, the characteristic life is often referred to as N63. 
The shape parameter, β, also known as the Weibull slope, 
is analogous to the inverse of the standard deviation. The 
larger the shape factor, the smaller the spread in the data.

Table 1. Common statistical distributions (adapted from Table 2.2 of Ref. [2])

Distribution Field of Application Example Applications

Normal Physical properties
Material properties, component values (such as resistance or capacitance), 
dimensions, etc.

Log Normal
Life phenomena of components; asymmetric distribu-
tions with large differences in observed values

Performance measurements for a population of systems such as cars, light 
bulbs, etc.

Weibull
Same as log normal and cases such as wear out, where 
failure rate changes

Life of components such as bearings, gears, electronic components, corroding 
materials, strength distribution of materials, survival probability in thermal 
cycling and shock, etc.

Exponential
System (multi-component) failures, including random 
failures

Non-wear out failures, life to failure of machines with many possible compo-
nent failure modes

Binomial
Define correct sample size for assessing a large 
population with a known defect probability

Inspection for process / quality control.  Sampled population large enough 
that parameters don’t change when sampled

Hypergeometric Same as Binomial, but for smaller populations Probability of finding X defects out of a finite population of Y parts

Poisson
Situations where the number of occurrences can be 
measured, but not the number of times they don’t 
occur

Long lines at the store, accidents, breakdowns, etc.

{1a}

{1b}

{2}
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While the Weibull coefficients (θ and β) are physically 
analogous to the normal distribution coefficients (µ and σ), 
there are no formulas for directly calculating the Weibull 
terms as there are with the normal distribution terms. The 
Weibull coefficients can be calculated using a different ap-
proach that is ultimately at least part of the reason that 
the Weibull distribution has been widely used for analyzing 
reliability data.

The approach for determining the Weibull coefficients be-
gins by first rearranging Equation {2}, as shown below.

Taking the natural log of both sides of the equation twice 
gives us:

This can be written as:

This produces a linear equation of the form Y=mX+C, 
where the terms for Y, X, and C are:

Once the regression analysis has determined the linear 
coefficients m and C, they can be used to determine the 
Weibull coefficients. The shape factor is equal to the slope 
of the regression analysis (β = m) and the characteristic 
life is determined by rearranging the above equation for 
C as θ = exp(-C/m).

One easy way to generate a set of fatigue data is to count 
the number of times paper clips can be bent from 0° to 
90°, as shown in Figure (1), before breaking. Data for the 
number of bends needed to break fourteen paper clips 
are shown in the first column of Table (2). As discussed 
later, this table also includes processed data used to cal-
culate the Weibull coefficients. As shown in the bottom 
of the table, the measurements had an average of 17.5 
bends with a standard deviation of 6.048.

11  The syntax to use this function to determine the rank of a value of X within a set of data Y, use =rank(X,Y,1) where 1 specifies 
ascending order so that the first failure is 1, the second failure 2, etc.

One possible way to define the cumulative failure distri-
bution, F(x), would be to divide the rank of the failure by 
the total number of samples. For example, if 10 compo-
nents are tested, the first failure would have F(x) = 0.1, 
the second one would be 0.2, etc. This approach, howev-
er ‘pushes’ F to higher values; for example, only the first 
failure would be categorized to the lowest 10% while the 
last two failures would be categorized to the highest 10%.  
A better approach for calculating the values of F(x) is to 
use the median ranks, which are typically calculated with 
Equation {3} [2]

In this equation, i is the rank of the failure and n is the total 
number of samples. For example, if 10 samples are test-
ed, the first failure would have F(x) = (1-0.3)/(10+0.4) = 
0.0673, the second failure would have F(x) = (2-0.3)/10.4 
= 0.163, etc.

Since the calculation of F(x) requires that the order of 
failures be determined (first, second, etc.), the Excel @
rank() function can be used to determine the order of fail-
ures11. Because of the way that this function deals with 
ties (each tie has the same rank), a small amount of 
‘noise’ was added to the data to prevent any ties when 
calculating the ranks used for F(x). This noise was gen-
erated using the random function, which generates a 
random number between 0 and 1, by adding the term 
‘rand()/100’ to the measured data, x, to create x*. The x* 
value was only used to determine the rank, which was 
then implemented in Equation {3} to calculate F(x).

{3}

Figure 1. Paper clip fatigue test configurations
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Table 2. Paper clip failures: raw and processed data

Data Noise Added Linearized Terms

x x* F(x*) ln(x)

26 26.006 0.9514 1.107 3.258

14 14.007 0.3958 -0.685 2.639

15 15.005 0.4653 -0.468 2.708

22 22.009 0.6736 0.113 3.091

12 12.003 0.2569 -1.214 2.485

19 19.000 0.6042 -0.076 2.944

17 17.000 0.5347 -0.268 2.833

13 13.008 0.3264 -0.929 2.565

10 10.003 0.0486 -2.999 2.303

11 11.002 0.1181 -2.074 2.398

11 11.006 0.1875 -1.572 2.398

26 26.002 0.8819 0.759 3.258

24 24.000 0.7431 0.307 3.178

25 25.004 0.8125 3.219 0.515

17.5 <= average => 2.806

6.048 <= stan, dev. => 0.351

Table 3. Regression and resulting Weibull coefficients

Figure 2. Paper clip data fit to different statistical distributions

Table 4. Excel functions used to calculate statistical distributions in Figure 2.

Distribution Excel Equation Used

Normal =NORM.DIST(N, 17.5, 6.048, TRUE)

Weibull =1-EXP(-((N/19.66)^3.088))

Lognormal =LOGNORM.DIST(N, 2.806, 0.351, TRUE)

Exponential =EXPON.DIST(N, 1/17.5, TRUE)

Poisson =POISSON.DIST(N, 17.5, TRUE)

Notes
   • Numerical values used in equations are shown in bold in Table 2 & 
        Table 3.
   • N is the number of cycles for which the CDF is found (for this plot, 
        values of N = 2, 4, … 38 were used
   • For Exponential distribution, a value of 24 gave a somewhat better fit 
        than the population average

Once values of x and F(x) were determined, the linear-
ized data of Y = ln(ln(1/(1-F) and X =ln(x) were calcu-
lated. Regression coefficients were determined using 
Excel functions m=slope(Y,X) and C=intercept(Y,X), as 
discussed in [3]. Table (3) shows the values determined 
for m and C as well as the Weibull coefficients deter-
mined from them.

Figure (2) plots the paper clip data along with correspond-
ing fits of the data using many of the distributions listed 
in Table 1. The Excel equations used to generate these 
curves are shown in Table (4).

12  The 3-parameter Weibull distribution includes an additional value, x0, which is offset value that forces the function to have a 
value of F(x0) = 0. The term x0, which corresponds to a failure-free life of the component, is physically useful but mathematically 
somewhat problematic since it prevents the Weibull distribution from being directly linearized.

An interesting observation from Figure (2) is that, except 
for the Exponential distribution, all of the distributions pro-
vided a reasonably good fit to the measured data. The 
primary differences between the different distributions 
are in the tails and the knees (where F(x) ~0-10% and 
~90-100%). One may then ask then, if the normal dis-
tribution, which is used almost everywhere, produces 
similar results to the Weibull distribution, why is Weibull 
primarily used for reliability analysis?

One reason is that Weibull distributions, as well as the 
other non-normal distributions shown, have a physically 
accurate limit. In those distributions, by definition, F(0) is 
equal to zero12. 

Regression slope, m 3.088

Regression intercept, C -9.198

Shape Factor, 3.088

Characteristic Life, 19.66

Notes
       •  = regression slope, m
       •   = exp(-C/m)
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In contrast, a normal distribution of failure data includes 
some portion of the population supposedly failing at neg-
ative cycles. This is typically a small value - for the data in 
Table (2), the normal distribution calculates that 0.318% 
of the paper clips would fail before the first bend.

The much more important reason why the Weibull distri-
bution has been used for assessing certain types of data, 
such as that from reliability testing, is that it does not rely 
on complete knowledge of the entire test population.  If an 
entire set of samples is tested until all fail, the normal dis-
tribution – or better yet the lognormal distribution, which 
passes through F(0) = 0, will likely describe the data as 
well as the Weibull. However, due to constraints in time, 
budget, testing availability, etc., testing may stop before 
all samples have failed. If one characterizes the popula-
tion only using that fraction of parts that have failed, the 
calculated average life will be much smaller since those 
components with longer lives would not be included in the 
calculations.

For example, if the paper clip testing had been stopped 
after a maximum of 15 bends, only half of the samples 
would have registered a failure. The average life of those 
parts would be 12.3 cycles, rather than the 17.5 that was 
found with the entire population.

Figure (3) plots the same distributions as were shown in 
Figure (2), but with truncated data that only included those 
failures that occurred within 15 cycles. It is not surprising 
that those distributions that depend on the mean values, 
which were lower in the truncated data, are pushed to the 
left and provide a less accurate description of the popu-
lation of the entire data set. Because the Weibull distri-
bution uses regression analysis of the failures as part of 
the entire test population, it continues to agree with the 
actual data.

Readers who are familiar with Weibull plots will notice 
that Figure (2) and Figure (3) use an unusual format for 
showing Weibull fits. Traditionally, those plots use linear-
ized axes so that the data are shown relative to a straight 
line. Figure (4) shows the data and the various distribu-
tions as plotted in this more conventional format.

CONCLUSIONS

This article briefly discussed statistical distributions oth-
er than the normal distribution and specifically focused 
on the Weibull distribution. The analysis presented here 
showed that most, but not all, of the distributions provid-
ed a reasonably good fit when data for the entire popu-
lation were available. However, the Weibull distribution 
was also able to directly determine an accurate repre-
sentation of reliability data, even when testing had been 
stopped before all samples were tested.  

Different distribution models are used for different types 
of analyses. It is important that, when using these differ-
ent distributions, one has some understanding of why a 
given distribution is typically used and to recognize its 
limits.

Figure 3. Failure distributions calculated only using failures up to 15 cycles

Figure 4. Paper clip data from Figure 2, plotted on linearized axes
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STATISTICS CORNER: MODIFYING SAMPLE SIZE

ABSTRACT

Reliability verification often requires that a specific num-
ber of components be tested to a predetermined level of 
testing to demonstrate that none of the samples fail. This 
article describes a statistical approach for justifying the 
use of fewer samples by subjecting them to a more se-
vere level of testing.

BACKGROUND

Reliability verification often includes accelerated testing 
in which a set of components must survive a prescribed 
set of severe environmental conditions. For example, 
components used in many avionics systems are  com-
monly required to demonstrate solder joint integrity for 
500 thermal cycles of -55 to +125°C [1].

One question that may arise in reliability testing is how 
many components must pass the test to demonstrate re-
liability. The number of components needed in a test is 
related to both the reliability that is to be demonstrated 
and the confidence level required for the results. Bayes 
(Success Run Theorem) formula13 provides a relationship 
between these three parameters [2] and can be written 
as shown in Equation {1}.

In this equation, R is the reliability, C is the confidence 
level and n = number of samples that are tested. Both the 
reliability and the confidence level have values between 0 
and 1. Figure (1) plots the confidence level resulting from 
different samples sizes for select values of reliability, as a 
function of the number of samples. 

Equation {1} can be rearranged to show the number of 
samples required for a given reliability and confidence 
level, as shown in Equation {2}.

13  This equation is based on setting the cumulative distribution function for a binomial distribution to be equal to 1 minus the 
confidence level.
14 Equation {2} finds the number of samples to be n = 14.27, which is rounded up to 15.

To demonstrate, for example, a reliability of 90% with a 
confidence level of 80%, a test would need to include at 
least 15 components14.

ANALYSIS

Established test procedures often define how many com-
ponents must be included in a given test, presumably 
based on an assessment of the reliability and confidence 
level required. In some cases, there may be a desire to 
test a different number of components than what has 
been prescribed for a test. This may occur if the com-
ponents are extremely expensive or if the evaluation 
approach, which determines whether a component has 
failed, is very expensive or time consuming. 

Reducing the number of samples in a reliability test re-
duces the confidence level that a given test demonstrates 
a particular reliability value. However, this can be offset 
by testing components more severely (to demonstrate a 
higher reliability) and thereby justify the use of a smaller 
number of test samples. This article describes a statistical 
analysis that provides a basis for adjusting the severity of 
testing to reduce the number of test components required 
to demonstrate the same reliability and confidence level 
as a larger population. This analysis has been described 
by many others, such as in [2].

The analysis is based on the assumption that the failure 
distribution of the test articles follows a Weibull distribu-
tion. As described previously, the Weibull distribution pro-
vides a relationship between the number of test cycles 
and the population’s failure rate. The Weibull distribution

{1}

{2}

Figure 1. Reliability and confidence level for different sample sizes
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is often used to analyze failure data and can be defined 
as shown in Equation {3}.

For this discussion, it is assumed that component test-
ing is evaluated using thermal cycling, but the same ap-
proach can be used for any type of accelerated testing.  
In Equation {3}, F(N) is the cumulative failure distribution 
of the population and N is the number of thermal cycles to 
which a population has been subjected. The failure char-
acteristics of the population can then be described with 
the parameters θ, which is known as the characteristic 
life, and the shape factor β. Figure (2) shows examples of 
Weibull distributions for different values of shape factors 
and characteristic lives.

Regardless of the shape factor, all distributions with 
the same characteristic life cross through that value at 
63.2%, hence the characteristic life also being known as 
N63. The cumulative failure distribution begins at zero 
and as the number of cycles increases asymptotically 
approaches 100%. The transition from F = 0 to F = 1 is 
sharper when the shape factor is larger. In terms of the 
more familiar Normal distribution, the characteristic life 
is analogous to the median of the population while the 
shape factor is analogous to the inverse of the standard 
deviation.  

The failure distribution is related to the reliability by:

In other words, if 5% of a population has failed it has a 
reliability of 95%.  

Equations {1}, {3}, and {4} can be combined to determine 
the number of thermal cycles required to demonstrate the 
same confidence level for a given reliability level for the 

different sample sizes. Combining Equations {1} and {3} 

relates the Weibull coefficients to the reliability:

Combining this with Equation (4) produces a relationship 
between the confidence level and the Weibull coeffi-
cients, leading to Equation (6) after taking the natural log 
of both sides.

If components from the same population with a given 
characteristic life and shape factor are used in two tests 
with different sample sizes (n), Equation {6} can be writ-
ten as:

In this equation, n1 and n2 are the sample sizes in tests 
1 and 2 respectively while N1 and N2 are the numbers of 
thermal cycles used in tests 1 and 2 respectively. The last 
two terms in Equation {7} can be rearranged to produce:

Equation {8} provides a method for calculating how many 
additional thermal cycles must be conducted for a test 
population with a reduced size. For example, consider a 
test that mandates that a population of 32 samples must 
survive for 500 thermal cycles. However, only 20 samples 
are available for testing. Assuming that the population will 
exhibit a failure distribution with a Weibull shape factor of 
5, the number of thermal cycles required would be:

The required number of cycles is rounded up to the near-
est whole number.

The critical assumption in determining an equivalent 
number of thermal cycles for a test is the value used for 
the Weibull shape factor. The shape factor depends on 
the type of component being tested, the type of test, and 
the consistency of the manufacturing build. One study, for 

{8}

{5}{3}

Figure 2. Weibull distributions

{4}

{6}

{7}
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example, has found that thermal cycle testing of surface 
mount components on assemblies built in a production 
environment had shape factors in the range of 3-6 [3]. 
This range seems reasonable based on this author’s ex-
perience, but it can vary depending on the consistency 
of the manufacturing processes as well as the type of 
component. 

For reference, Figure (3) plots equation {8} for a number 
of values of shape factors and assuming a standard test 
population size of 32 components. For example, consid-
er a standard test that requires that 32 components sur-
vive 100 cycles. If the component is assumed to have a 
shape factor of 3, and is tested with only 10 samples, the 
test would need be conducted for ~1.45x (145) cycles to 
demonstrate the same confidence level.

One should be cautious in applying this approach to jus-
tify substantially reducing the number of samples by test-
ing more severely. For example, with this approach one 
could theoretically reduce the sample size for a test pop-
ulation with shape factor of 3 from 32 to 3 by doubling the 
test duration. This is dangerous due to the risk of initiating 
a new failure mechanism that would not otherwise appear 
in a shorter accelerated test. In addition, the uncertainty 
of the shape factor for a given population is magnified 
when used with larger ratio of test cycles as shown in 
Equation (8). As a rule of thumb, one should generally 
not apply Equation (8) to justify a smaller sample size that 
requires increasing the test duration by more than ~40%.

SUMMARY

This article described an approach for determining how 
many additional thermal cycles are required to meet a 
given reliability level if testing is conducted with fewer 
than the standard number of test samples. The approach 
assumes that the failure distribution of the components 
follows a Weibull distribution of cumulative failure as a 
function of test cycles. It also assumes that the minimum 
expected Weibull shape factor for the component pop-
ulation s can be estimated with a reasonable degree of 
confidence.

Figure 3. Equivalent test cycles for reduced sample size
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