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Embracing the Future: How AI and Generative Gesign Reshape High Tech Competence.

In the wake of unprecedented challenges like Covid pandemic, the ongoing Ukraine war, and the resulting component shortage, industries worldwide 
are showing remarkable resilience. As we stand at the precipice of a new era, all sectors are poised to take a giant leap forward.

The buzzword on everyone's lips is no longer Industry 4.0; instead it’s Artificial Intelligence (AI), which is expected to revolutionize the industry land-
scape. With the advent of AI and generative design, the industry is on an exploratory journey that promises to redefine our competence, capabilities, way 
of working and software tooling.

I recently found myself deeply involved in updating our company’s thermal management and mechanics technology funnel, aiming to identify most 
pertinent new technologies to our business. Along with the identification of potentially relevant technologies, I analyse the disruptive trends touching 
almost all industries. To name a few:

- Electronics – Industry remains dominated with the continuous increase of electronics/sensors. Electronics are still on today’s agenda.
- Growth of additive manufacturing – 3D printing is re-shaping the manufacturing industry.
- Digital transformation is still progressing – Software suppliers start to focus on fully embedded tool suite, running simulation with embedded 

Digital twins, adoption of AI in the tool suite
- Sustainability – Suppliers start to consider sustainability in their solutions e.g. easy recyclability, saving of resources, refurbishment, re-use
- Towards resilient systems – Uncertainties at the supply chain leads to incorporate the potential for disruption, make system simpler

As the era for digitalisation and sustainability unfolds, we seek enhanced performance while striving to remain at the vanguard of innovation. Excitingly, 
Digital twins and new manufacturing processes such as 3D-printing have opened doors to a plethora of possibilities, ushering in a new era of product 
development.

One article that aroused my attention was “Shift left, Extend right, Stretch sideways”, by Brian Bailey, published in SemiconductorEngineering. It reso-
nated with my thoughts on the ongoing technological upheaval and its potential impact on our collaboration, way of working. Moreover, “Don’t panic 
– the potential impact of Large Language Models (LLMs) on Computer Aided Engineering”, an insightful Linkedin post by Robin Bornoff, beautifully 
encapsulated our current position and the challenges that lie ahead.

But amidst this transformational landscape, the burning question remains: How will AI, ChatGPT, and Generative design impact our product develop-
ment process? What might be their implications on electronics development and on thermal management?

AI and generative design have the potential to revolutionize the way we conceive, design, and manufacture products. They empower us to unlock un-
precedented levels of efficiency, creativity, and innovation. By leveraging AI and generative design, engineers can explore countless design possibilities at 
an incredible pace. This accelerated ideation process can lead to new breakthroughs that the human mind alone might not have envisioned.

The implications extend far beyond efficiency gains. Our cooling of the electronics field, crucial in today’s and future products, stands to benefit sig-
nificantly from these technological advancements. As a result, we can push the boundaries of performance and design complexity handling without 
compromising on sustainability or innovation.

However, as with any technological leap, there are challenges and ethical considerations to address. While AI can generate designs quickly, humans still 
bring creativity, judgement to the design process. Besides, as AI generates numerous design options, ethical considerations might arise. For instance, 
a design might be unsafe for users, not adhere to environmental or social standards. As we embrace AI and generative design, we must ensure that we 
maintain a balance between human creativity and automation.

As the high-tech industry moves forward, embracing these transformative technologies with a mindful approach will undoubtedly shape the future of 
our competence: collaboration, knowledge sharing, and continuous learning will be key to harnessing the full potential of AI and generative design. 

As always, we editors welcome your feedback and invite you to submit your own article to be included in a future issue.

Genevieve Martin
Associate Technical Editor of Electronics Cooling Magazine
R&D Manager for Thermal & Mechanics

EDITORIAL
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Thermal Management Expo Europe
Stuttgart, Germany

Part of the global Thermal Management Expo portfolio, Thermal Management Expo Europe is the 
only free to attend cross-sector exhibition and conference connecting senior engineers and decision 
makers with suppliers of thermal systems and materials. It's a unique opportunity for professionals 
in the Automotive, aerospace & Defence, electronics, energy, Telecoms/5G, and medical sectors to 
discuss the latest thermal innovations and solutions, benefiting from cross-sector networking and 
in-person interaction with the latest materials, components, and technologies available in the thermal 
marketplace.

Desc. source: electronics-cooling.com
►thermalmanagementexpo-europe.com

Thermal Live Spring Summit 2024 
Virtual

Thermal Live Spring Summit 2024 is an online, one-day event that is your chance to hear from thermal 
management experts on current trends, product updates, and concepts explained. Join Electronics 
Cooling for a day to enhance your craft and be in the know!

Desc. source: electronics-cooling.com
►thermal.live

Battery Thermal Management Innovation 
Paulo Alto, California

Battery Thermal Management Innovation USA is the #1 and most revered conference&exhibition to 
match OEM and Battery Manufacturer requirements with expert material, solution, and technology 
providers. Following the series’ success over the previous four instalments in California the show has 
continued to grown and has become know as the industry’s best-in-class and foremost communication 
network for BTM practitioners. BTM Innovation USA is North Americas leading event for battery 
thermal management engineers, technologists, and experts to collectively address the key challenges 
and industry innovations surrounding advanced battery thermal management systems, materials, 
technologies, and solutions; to increase efficiency, range battery health, and optimizes solutions for 
increasingly demanding, ever advancing battery requirements. The conference analyses innovative 
battery management solutions, explores the most crucial engineering and material challenges and 
benchmarks strategic imperatives for next-generation BEV advancement. We welcome you to join 
over 400 xEV experts at North Americas largest technical conference for battery thermal management 
professionals and foremost communication network for OEMs, technology and solutions providers 
alike; where experts will engage during a series of case study presentations, interactive panels and 
unparalleled networking opportunities.

Desc. source: electronics-cooling.com
►battery-thermal-management-usa.com
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Overview

T
hermal Design Power (TDP) is a term common-
ly used in thermal management of consumer elec-
tronics. While the usage of this terminology may 
vary across the industry, it commonly refers to the 

amount of power that a device may dissipate indefinitely, in 
a given thermal environment, without exceeding the tem-
perature limits of the device. The TDP for a consumer elec-
tronics device is of great interest because it provides phys-
ical bounds to the experience a product can deliver to the 
user (e.g., phone call, internet, photo capture, gaming, etc.).   
 
Thermal design engineers often have the most influence on 
a product’s design during its architecture development. It is 
not uncommon for designs to rapidly evolve in this phase of 
the design cycle, with real-time changes occurring daily or 
even hourly.   Some first-order tools are essential to provide 
effective thermal design guidance in a fast-paced environ-
ment. Detailed finite element or computational fluid dynam-
ics simulations are often not practical due to the timeline and 
lack of design maturity. TDP provides one simple and use-
ful metric that can guide the design in the desired direction. 
 
Where We Left Off
Physics-based methods for determining the thermal design 
power of a passively cooled consumer electronics device have 
been developed.  The thermal design power of a device like that 
shown in Figure 1 is typically calculated using equation 1, where 
h is the effective heat transfer coefficient, A is the external area 
of the device, Tlimit is the touch temperature limit, Tambient is the 
ambient operating temperature, and the CTS is the coefficient 
of thermal spreading [1]. 

The coefficient of thermal spreading is a term that accounts for 
any spatial temperature gradients over the surface of the device.  
This term is typically between 0.5 and 0.8 for consumer elec-
tronics devices, with a value of 1.0 representing the ideal iso-
thermal device.

Part 1 of this column provided a method to calculate the CTS 
for thermal gradients in the plane of the device [3], while Part 
2 provided a method to calculate the CTS for thermal gradients 
through the thickness of the device [4]. These methods will be 
briefly summarized in the following sections, then they will be 
combined to provide the thermal design engineer with a CTS cal-
culation methodology that enables them to simultaneously cap-
ture the effects of both in-plane and through-plane temperature 
gradients on thermal design power.

Calculating Thermal Design Power for Mobile 
Consumer Electronics – Part 3

Alex Ockfen, P.E.
Simulation Engineer at Meta

{1}

Figure 1 - Isotherm on an example tablet or mobile phone product

Figure 2 - Example geometry of a product for demonstrating TDP calculations

http://www.electronics-cooling.com
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In-Plane Thermal Gradients
Figure 2 defines the general construction and geometry of the 
consumer electronics device used to illustrate the thermal design 
power calculation. While a notional design with the heat source 
along the centerline of the device is shown here, the approach is 
general, and the practicing engineer may adjust the parameters to 
fit their specific needs.

The large aspect ratio of mobile phones and tablets is reminiscent 
of a fin. Thus, an in-plane coefficient of thermal spreading can be 
calculated using equation 2, where η is the fin efficiency, Lc is the 
characteristic length, and m is defined via equation 3.

The quantity m is a function of the fin perimeter (P), cross-sec-
tional area (Ac), effective conductivity of the device housing (keff), 
and the heat transfer coefficient (h). The heat transfer coefficient 
in this equation can be chosen using empirical correlations and 
should account for both convection and radiation.

Through-Plane Thermal Gradients
A through-plane coefficient of thermal spreading can be calculat-
ed using a parallel resistance network as shown in Figure 2, where 
the thermal resistance values from the heat source to the front 
(RF) and back (RB) surfaces of the device define the heat transfer 
split and through-plane temperature differential. These resistance 
values can be calculated using the standard resistance formulas 
for conduction and convection as provided in equation 4.

Solution of the parallel resistor network yields the thermal 
spreading multiplier (M*through-plane), defined in equation 5, where 
R∞ is the thermal resistance between the device surface and the 
external environment. R∞ is calculated based on the full surface 
area of one side of the device (front or back only). Note that this 
multiplier includes the in-plane fin efficiency which is required 
when in-plane temperature gradients are present and influence 
resistance to ambient. This fin efficiency parameter was not in-
cluded in reference [4] because no in-plane temperature gradi-
ents were assumed in that effort.

Two additional equations are provided to enable a non-dimen-
sional formulation and enable generic design plots against the 
quantity Req/Rmax. Req is defined by equation 6 and represents the 
total equivalent thermal resistance from the heat source to the 
environment (including both front and back surfaces). Rmax is de-
fined by equation 7 and represents the larger of the thermal re-
sistances between the heat source and the environment (through 
either the front or back surfaces individually).

Bringing It All Together
It is typically not practical to design a device with either perfect in-
plane thermal spreading or with a perfect heat balance between the 
front and back surfaces. Thus, it is useful to extend the equation for 
the coefficient of thermal spreading to include both the in-plane 
and through-plane contributions previously discussed.

The combined coefficient of thermal spreading calculation is 
provided in equation 8 and is obtained by multiplying the fin 
efficiency (η) from equation 2 and the through-plane multiplier 
(M*through-plane) from equation 5.

Figure 3 illustrates the coefficient of thermal spreading as a 
function of the non-dimensional design parameters governing 
in-plane (1/mLc) and through-plane (Req/Rmax) thermal perfor-
mance.  The CTS is shown to be most sensitive to in-plane thermal 
spreading and can approach zero when 1/mLc approaches zero.  
This can occur when either the effective thermal conductivity of 
the housing becomes small, or the device becomes large (com-
pared to heat source size).  The importance of through-plane heat 
spreading is also apparent as a near-ideal in-plane design (1/mLc 
= 5) may yield a coefficient of thermal spreading of 0.5 if there is 
an extreme imbalance in the thermal resistance between the heat 
source and the front and back surfaces of the device.

We can now reframe the data to make it more useful for the ther-
mal design engineer. Thermal design power targets are common-
ly known and can be easily translated into a target CTS value us-
ing equation 1. Figure 4 provides design curves for multiple target 
CTS values. Each curve provides a set of design combinations that 
can be selected to achieve a target CTS value based on in-plane (1/
mLc) and through-plane (Req/Rmax) design parameters.

We now have all the tools we need to calculate the physics-based 
coefficient of thermal spreading and enable robust prediction of 
system thermal design power. 

{2}

{3}

{4}

{5}

{6}

{7}

{8}

http://www.electronics-cooling.com
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Putting it into Practice
Let’s demonstrate this for the notional device with the inputs 
specified in Table 1. It is common for the environment, tem-
perature limits, and form factor to be known early in the design 
process.

 

Assuming we use a housing material construction with an ef-
fective thermal conductivity of 20 W/m-°C, the in-plane ther-
mal performance is calculated in Table 2. The calculated fin 
efficiency is 0.55, meaning the device rejects heat from its top 
or bottom surface as effectively as an isothermal surface with 
55% of the area.

The cross-section of the notional device is provided in Figure 5.  
Heat is assumed to be generated on the heat source located in 
the middle of the device. Heat leaving the front surface of the de-
vice passes through a thermal interface material (TIM) that is the 
same size as the heat source. Heat leaving the back of the device 
passes through the printed circuit board (PCB) and an air gap.  
The thickness (t) and thermal conductivity (k) of each layer is 
specified in Figure 5.

The thermal resistance in each individual layer is calculated us-
ing the one-dimensional resistance equation for heat conduction 
(equation 4). The resistance to the front and back of the device is 
calculated by combining the individual layer resistance values; this 
is achieved via a simple sum when the individual resistors are in 
series. The area used in the PCB and TIM resistance calculations is 
assumed to be that of the heat source (500 mm2). 

The resistance to the environment is calculated using the thermal 
resistance equation for heat convection. Note that the effective heat 
transfer coefficient (h) in this equation accounts for all heat rejec-
tion modes. In this example the value is based on the sum of an em-
pirical correlation for natural convection and a linearized radiation 
heat transfer coefficient.

Table 2 summarizes the through-plane heat spreading calcula-
tion. The ratio of the equivalent resistance to the maximum re-
sistance (Req/Rmax) is 0.41. Given that this value is below 0.5, there 
exists an imbalance in heat transfer between the front and back 
surfaces of the device. The resulting through-plane multiplier 
(M*through-plane) is 0.85.

Now that we have calculated the in-plane and through-plane 
performance, we combine them in Table 3 to calculate an overall 

INPUT VALUE UNITS

Tlimit 45 °C

Tambient 25 °C

h 10 W/m2 - ºC

Lc 75 mm

W 50 mm

thousing 1 mm

PARAMETER EQUATION VALUE UNITS

P W + 2thousing 52 mm

Ac Wthousing 50 mm2

keff - 20 W/m-°C

m Equation 3 22.8 1/m

1/mLc - 0.58 -

η Equation 2 0.55 -

Table 1 - Inputs for example calculation

Table 2 - In-plane CTS calculation

Figure 4 - In-plane and through-plane design parameters required to achieve desired CTS Figure 5 - Cross-section illustrating heat paths in a notional device

Figure 3 - Combined CTS as a function of in-plane and through-plane design parameters

http://www.electronics-cooling.com
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coefficient of thermal spreading of 0.47. The resulting thermal 
design power for the example device is thus 1.40 Watts. This is 
much lower than the ideal thermal design power of 3.00 Watts, 
illustrating the influence of in-plane and through-plane tempera-
ture gradients on device capability.

If additional thermal capability is required, the thermal designer 
can iterate this process to converge on a more satisfactory set of 
design parameters. Figure 4 can be used to guide the designer in 
determining the required in-plane and through-plane design pa-
rameters to achieve a satisfactory result.

Concluding Remarks
Thermal design power calculations provide powerful data for 
efficiently exploring the design space and making architectur-
al decisions such as the form factor of the device, the targeted 
user experiences, material properties, device construction, and 
the supported thermal environments. A physics-based approach 
for calculating the thermal design power for a mobile phone or 
tablet is provided that includes the effects of both in-plane and 
through-plane thermal gradients. Approaches such as this are 
helpful when you don’t have historical test data or are exploring 
new architectures. Additionally, the approach provides action-
able data for reverse engineering the thermal requirements of 
the design to achieve a desired spreading coefficient or thermal 
design power.

While this method can be very useful, it does not replace detailed 
design and validation. It is instead intended to enable early design 
explorations before you transition to more detailed simulations 
and/or tests. 

PARAMETER EQUATION VALUE UNIT

R TIM (t/kA)TIM 2.0 °C/W

R PCB (t/kA) PCB 4.0 °C/W

R air
1 (t/kA)AIR 13.4 °C/W

RF R TIM 2.0 °C/W

RB R PCB + R AIR 17.4 °C/W

R∞ 1/hA 13.3 °C/W

Req Equation 6 15.5 °C/W

Rmax Equation 7 37.7 °C/W

Req/Rmax - 0.41 -

M*thru-plane Equation 5 0.84 -
1 Air gap conductions assumes lateral spreading can occur in PCB similar 
to the housing, 150mm x 50mm x η

PARAMETER EQUATION VALUE UNIT

η Equation 2 0.41 -

M*thru-plane Equation 5 0.85 -

CTS Equation 8 0.47

TDPideal Equation 1* 3.00 W

TDPcorrected Equation 1 1.40 W

* Isothermal assumption, CTS = 1

Table 1 - Inputs for example calculation

Table 3 - Through-plane CTS calculation
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Revolutionizing Data Center Sustainability with 
Intelligent, Purpose-Built Solutions 

Mukul Anand
Global Director of Business Development,

Applied HVAC Global Products, Johnson Controls

Mukul Anand
With over 25 years of experience in the HVAC industry, I am a passionate and results-oriented leader who strives to deliver val-
ue-added solutions for data center customers worldwide. As the Global Director of Business Development at Johnson Controls, I 
leverage my expertise in datacenter cooling, product management, energy management, and applied HVAC to collaborate with 
our customers, understand their needs, and provide strategic guidance to reduce power consumption, water usage, and total 
cost of ownership. I am motivated by the mission of Johnson Controls to create a more sustainable and comfortable world, and I 
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Introduction

B
y pairing an air-cooled, magnetic bearing chiller and 
mission-critical air handling units with the sophisticat-
ed AI capabilities of open source digital platforms, data 
centers can reduce energy use by allowing for a dynamic 

— rather than static — chilled water setpoint. 

The primary objective for any data center is flawless data pro-
cessing; critical to achieving that objective is high reliability and 
maximized uptime. However, to mitigate the effects of climate 
change, another attribute has become equally important — min-
imized environmental impact. Since maintaining uptime has tra-
ditionally required significant energy and resources, these goals 
seem to be at odds.

Data centers are one of the most energy-intensive types of 
buildings, consuming 10 to 50 times the energy per floor space 
of standard commercial office buildings and collectively us-
ing about 2% of the nation’s total electricity consumption.1 As 
technology leaders make significant net-zero and water com-
mitments, they are seeking new innovations to reliably reduce 
energy and resource use.

Aside from the electricity that servers consume, HVAC equip-
ment is responsible for as much as 40% of electricity use in data 
centers. To operate sustainably and profitably, it’s critical these 
facilities optimize HVAC energy efficiency while ensuring data 
center uptime. 

The latest innovations in HVAC and smart building technolo-
gy make this outcome possible, cutting energy and water usage, 
carbon emissions and costs while ensuring the highest reliabil-
ity. Mission-critical, computer room air handling units paired 
with an air-cooled, magnetic bearing chiller, digital solutions and 
building automation technology can significantly improve data 
center sustainability while maintaining an environment that sup-
ports reliability and uptime.

Maintaining Cold Aisle Temperatures
The temperature of the cold aisle determines how aggressively 
HVAC equipment and server fans must work, and therefore 
how much power they consume, to ensure the proper volume 
of air moves through servers to remove heat. A higher cold aisle 
temperature results in lower chiller power consumption. A lower 
cold aisle temperature results in a smaller volume of airflow being 
needed and less fan power consumption for the air handling unit 
fans and server fans. 

To prevent hot spots in a data center’s white space and ensure up-
time, data center cooling strategies have historically favored lower 
cold aisle temperature and higher air flows — even beyond what’s 
needed. This excess airflow acts as a buffer for an application that 
is close to the edge of the requirement. For example, if a certain 
server has higher than usual load on it, it may starve the cold aisle 
of cold air and may overheat. The extra airflow provides a safety 
net, but it also wastes energy.

1 https://www.energy.gov/eere/buildings/data-centers-and-servers
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Advances in server technology have made it possible for the latest 
generation of servers to operate at high ambient conditions in 
warmer cold aisles. Servers that can operate in a greater tempera-
ture range make it possible for a broader range of acceptable cold 
aisle temperatures. 

By optimizing the cold aisle temperature, a data center can consume 
the minimum power required to cool it. Currently, this temperature 
is a static number. However, research into the effects of a dynamic 
cold aisle temperature proves that a dynamic cold aisle temperature 
can deliver optimum cooling according to the ambient conditions 
in the data center load at any given time – and the technology to 
do it is available now. 

For instance, when it’s very cold outside, there is an opportunity 
to use economization or free cooling and simultaneously lower 
the chilled water setpoint and lower the cold aisle temperatures. 
This reduces airflow and power consumption from the computer 
room air handler as well as server fans. When a data center uses 
a static chilled water setpoint and a static cold aisle temperature, 
this opportunity is lost. 

On the hottest afternoons of the year, the chiller power con-
sumption is highest because the lift on the chiller is high. Chiller 
lift refers to the difference in pressure between the refrigerant in 
the condenser and the refrigerant in the evaporator. At higher 
lifts, the compressor consumes higher amounts of power to drive 
the thermodynamic cycle. The lift may be reduced by raising the 
chilled water setpoint and the cold aisle temperature for a few 
hours in the afternoon. This reduces the power consumption by 
the chiller compressor(s). The industry uses the term temporary 
excursion from ASHRAE Thermal Guidelines for Air Cooling of 
IT Equipment.

The pairing of an air-cooled, magnetic bearing centrifugal chiller 
and mission-critical, computer room air handlers with an open 
source digital platform and building automation system can drive 
cold aisle temperatures that suit data center loads at any given 
moment. A dynamic chilled water setpoint, and a dynamic cold 

aisle temperature overall, helps optimize a data center’s power 
consumption without risking the uptime of the data center. This 
method of continuous optimization could lead to the best real-time 
energy efficiency of the data center while providing cold aisle 
temperatures that help maintain uptime. 

Innovative Technology For an Evolving Industry
Historically, data centers have used chillers and other HVAC 
equipment that were designed for comfort cooling, not data centers. 
In comfort cooling, chilled water setpoints are around 44ºF. How-
ever, server manufacturers are becoming more comfortable with 
processors and motherboards operating at higher temperatures, 
which means they can be cooled with chilled water upwards of 80ºF. 

Innovations in chillers for data center applications make it possible 
for chilled water setpoints to be anywhere from 70ºF to 80ºF, and 
sometimes even higher. This reduces power consumption and 
increases the number of annual hours, when free cooling can be 
used to significantly reduce the amount of power that is consumed 
by data centers throughout the year.

Designed specifically for data centers, air-cooled, magnetic bearing 
centrifugal chillers are optimized for increased temperatures inside 
the white space and the lifts that are prevalent in the data center 
industry today. They can deliver chilled water temperatures that 
are upwards of 80ºF and cater to a low lift, resulting in greater 
energy efficiency.

While most data centers use air-cooled chillers that have free 
cooling coils to benefit from lower ambient conditions, air-cooled, 
magnetic bearing centrifugal chillers can operate at inverted condi-
tions and provide free cooling without additional free cooling coils. 
Free cooling coils that are added to the condenser of the chiller 
can lead to inefficiencies and additional pressure drops, as well as 
heavier equipment and a larger carbon footprint. The weight they 
add to the chiller is embodied carbon, from the metal that makes 
up the coils, to heavier shipping and rigging weight, to the need for 
a building structure that inherently has more steel in it to support 
additional weight on the rooftop. Using a chiller that is lighter 
and provides inverted-operation free cooling positively impacts 
the carbon footprint of the building itself in many dimensions. 

The friction-free, magnetic drive benefits uptime, as well. If power 
is interrupted, a typical chiller can take up to 10 minutes to restart. 
In comparison, magnetic bearing centrifugal chillers have much 
faster compressor restart times and can return to full load in as 
few as three minutes after power is restored. Because air-cooled, 
magnetic bearing centrifugal chillers use a variable-speed drive, 
there is no inrush current. This means a fast, controlled return to 
full capacity and setpoint. 

To further improve data center sustainability, air-cooled, magnetic 
bearing chillers produce notably less sound than many screw 
chillers, and some use R-1234ze, a refrigerant with ultra-low global 
warming potential (GWP). 

Figure 1 - showing power consumption of different efficiencies of chillers compared to cold 
aisle temperature
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When connected to an AI-based solution, air-cooled magnetic 
bearing centrifugal chillers combined with high-efficient mis-
sion-critical computer room air handlers designed with electroni-
cally commutated motors (ECM) can match cold aisle temperature 
with the real-time load and optimize energy use from moment to 
moment. Having a dynamic chilled water setpoint and cold aisle 
temperature optimizes energy use without risk to data center 
uptime. 

Optimizing Energy Use Based on Real-Time Conditions
Intelligent digital services, like that provided by an artificial intel-
ligence (AI)-based solution, integrated with air-cooled magnetic 
bearing centrifugal chillers and high-efficiency mission-critical 
computer room air handlers, provide the most optimized energy 
solution. Coupled with a dynamic water setpoint and a routine 
chilled water reset strategy offers even further energy savings. These 
solutions optimize airflow based on real-time conditions and can 
significantly reduce a data center’s energy use. 

As part of a digital platform, an AI-based solution can be either an 
advisory or a supervisory function sitting on top of the building 
management system (BMS). There, it ensures that data center per-
sonnel can evaluate the real-time data center loading and real-time 
data center requirements around the ambient conditions, as well 
as know the historical loading patterns or trends. Equipped with 
this valuable information, facility managers can ensure the system 
is operating as efficiently as it can. 

A chilled water reset strategy can help reduce energy use during 
peak demand periods in data centers that experience high ambient 
temperatures. A chiller’s power consumption depends on lift, and 
lower lift means less energy use. During the hottest afternoons 
of the year, a low chilled water temperature is required to cool 
the data center. To achieve this, lift and power consumption are 
typically high. However, the chilled water setpoint can be adjusted 
to a higher temperature for four or five hours in the afternoon to 
improve system energy efficiency while relying on a slight ramp-up 
of the high-efficiency ECM fans in the computer room air handlers.

This chilled water reset deviates from standard conditions and 
isn’t permitted by some service-level agreements. To improve 

overall efficiency and data center sustainability, it’s important to 
include chilled water reset for a set number of hours per year in 
service-level agreements. 

Using historical trends, an intelligent cooling system can anticipate 
and prepare for the next loading change. For example, if a data 
center consistently generates a lot of heat around 8 a.m., the system 
can be automated to gradually ramp up capacity starting at 7 a.m. 
rather than running at 100% capacity at 7:59 a.m. This gradual 
ramp-up minimizes system spikes, improves energy efficiency and 
can even extend equipment life.

A combination of digital solutions, connected equipment and 
building automation technology can make data centers smarter 
and more sustainable. These solutions allow facility managers to 
continuously monitor equipment health and energy consumption 
in real time while automating key processes. Some solutions also of-
fer easy-to-read dashboards that display trends and notify assigned 
personnel when set parameters deviate from assigned values. That 
allows facility teams to address issues, identify opportunities for 
energy savings and drive outcomes that matter most.

Improving Energy Efficiency and Uptime — Simultaneously
Technology leaders have very strict sustainability goals with ag-
gressive deadlines to reach them. It’s critical that data centers are 
equipped with innovative solutions to help achieve those goals 
as quickly as possible. Purposefully designed air-cooled, mag-
netic bearing centrifugal chillers combined with mission-critical, 
computer room air handlers driven by artificial intelligence can 
optimize sustainability according to real-world, white space 
conditions and significantly improve data center efficiency while 
maintaining uptime. 

As servers become more capable of operating at high ambient 
conditions and data center owners and operators become more 
comfortable with warmer cold aisles, it’s essential that HVAC 
equipment be ready to operate at higher chilled water setpoints 
and higher cold aisle temperatures. This shift in a long-held 
design mindset presents the opportunity to create a smarter, 
more sustainable data center architecture that collaborates and 
empowers overall energy efficiency and reliability. Air-cooled, 
magnetic bearing centrifugal chillers, mission-critical computer 
room air handlers and a logic-based BMS can grow and evolve 
with data centers, providing continuous improvement today 
and tomorrow.  

Figure 2 - showing sound levels of different types of chillers
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Introduction

I
n the development of modern-day thermal management 
systems, we are continuously looking to implement cool-
ants that offer high heat transfer performance, low pump-
ing power requirements, are cost-effective and have a low 

environmental impact. Supercritical carbon dioxide (SCO2) has 
a range of incredible properties that lend it to meeting all these 
needs, even contending with conventional liquid-vapor phase 
change fluids that are actively cooling our high-demand elec-
tronic systems. The fluid does not experience critical heat flux 
conditions and has a relatively low operational temperature, at 
just over 31°C. Carbon dioxide is also a non-explosive, non-flam-
mable, non-toxic fluid that is highly accessible and cost-effective. 
Admittedly, SCO2’s high operational pressure and heat rejection 
temperature requirements can pose design challenges that must 
be accounted for. However, SCO2 has already been integrated as 
an active fluid into a range of high-efficiency power cycles with 
promising results [1,2].

Characteristics of Supercritical Carbon Dioxide
Carbon dioxide becomes supercritical when conditioned beyond 
critical point properties (31.1°C and 78.3 atm). At this state, the 
fluid experiences spikes in specific heat capacity that rival or ex-
ceed traditional phase change fluids, while operating at lower, 
gas-like densities. Figure 1 illustrates the specific heat magnitudes 
that can be achieved and the operational temperature envelopes 
that accompany them.

At subcritical pressures, specific heat capacity values spike at the 
saturation temperature, whereas at supercritical pressures they 
spike at the pseudocritical line. It is at this line - where the fluid 
transitions from a liquid-like to a gas-like state upon the absorp-
tion of heat –at which we want our systems to operate in order to 
maximize performance. Unlike the mechanisms behind conven-
tional phase change, this process does not result in the generation 
of visible nucleation sites or bubbles. Instead, the fluid becomes 
less dense and consequentially easier to move. The combination 
of higher specific heat capacities and gas-like fluid density gives 
SCO2 the ability to effectively cool high heat flux components 
with lower pumping power requirements than many alternative 
phase-change systems. 

This study is a direct continuation of the work performed by the 
Enhanced Heat Transfer Laboratory at Oregon State University 
(OSU) in 2019, where the first SCO2 cold plate made with ad-
ditive manufacturing techniques was evaluated. The conclusions 
drawn from that study, in comparison to other industry-standard 
coolants, distinguished SCO2 as a highly competitive coolant for 
electronics cooling applications [3,4]. The experimental design 
of the present work aims to simulate a data center environment 
such that the results more closely reflect real-world applications.

Experimental Facility
A carbon dioxide conditioning loop, in conjunction with a heated 
experimental fixture, was constructed to generate and evaluate 
the performance of SCO2 in an electronics cooling application. 
The conditioning loop serves to pressurize and heat saturated 
CO2 (out of the cylinder) to the desired supercritical state. The 
heated experimental fixture is comprised of a pure copper block, 
surrounded by three inches of insulating Teflon™ and supplied 
with power by four cartridge heaters. A custom aluminum cold 
plate is bonded to an exposed copper surface that acts a hot pro-
cessor chip surrogate. 

The cold plate itself, which can be seen in Figure 2, was man-
ufactured with direct metal laser melting techniques. Internally, 
it is comprised of seven parallel channels with hydraulic diame-
ters of just over a millimeter and seven circular thru-holes, which 
are visible at the base. These holes are essential for the tempera-
ture-sensing technique utilized in this study. Geometric parame-
ters and manufacturing tolerances of interest were verified using 
neutron radiography techniques at OSU’s TRIGA reactor.

While most of the sensing techniques used to capture data were 
fairly standard, one requiring further explanation is the fiber op-
tic temperature sensor used to collect cold plate wall temperature 
values. By use of the phenomenon known as Optical Backscat-
tering Reflectometry (OBR), this sensor is able to generate nu-
merous, discrete temperature measurements along the length of 
a fiber optic cable. By routing this cable (back and forth) through 
the base of the cold plate, we are able to generate two-dimension-

Figure 1 - Carbon dioxide specific heat capacity versus temperature plot at both subcritical 
(left) and supercritical pressures.

Figure 2 - Additively manufactured aluminum cold plate to evaluate SCO2 performance. 
Isometric (top) and neutron radiography views (bottom) provided.
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al temperature maps that reflect the thermal performance of the 
coolant, as illustrated in Figure 3.

OBR utilizes Rayleigh backscattering techniques to pinpoint the 
location of the fiber optic cable relative to its Teflon sheathing. 
Light signal reflection times generate a baseline reading, and as 
the sheathing changes form under the application of heat and 
thermal expansion, the change in light reflection times may be 
correlated to changes in local strain and temperature. In our case, 
this allows for the collection of internal temperature measure-
ments from within the cold plate wall and a deeper understand-
ing of local heat effects at a frequency of 10 Hz [5]. 

Generating these temperature maps is essential to evaluating a 
given system’s local thermal management needs. Beyond the 
ability to visualize the streamwise temperature distribution of the 
cold plate itself, we are also able to see the exact location of local-
ized hotspots and their magnitudes. Furthermore, these discrete 
wall temperatures can be used to compute local heat transfer co-
efficient values, which can be very powerful in evaluating per-
formance and working towards system optimization. From this 
information, adjustments can be made such that the desired inlet 
fluid temperature and corresponding span are adjusted to pro-
vide the highest cooling capabilities to the regions of the heated 
surfaces that need it the most. 
 
Evaluation of Performance
In conjunction with the experimental data captured, numerical 
models were generated for convective heat transfer coefficient 
(HTC) and cold plate pressure drop data sets. All of the data pre-
sented within this section were taken at a constant pressure of 
7.93MPa (1150 psi), mass flow rate (500g/min), and input power 
delivered by the cartridge heaters (200W) – translating to a heat 
flux density of 41W/cm2. 

Figure 4 illustrates the relationship between the system’s average 
HTC and temperature. Here, it can be seen that maximum HTC 
values of around 19kW/m2-K are measured at around 33.5°C – 
in close proximity to the expected pseudocritical temperature of 
34.2°C. HTC values are also generally higher when the fluid is 
at lower temperatures (liquid-like) and begin to drop off as the 
fluid becomes increasingly gas-like. While there is an apparent 
disconnect between the numerical model and experimental data, 
it should be noted that the model captures the general trends of 

the experimental data – and even reflects comparable HTC values 
around the pseudocritical temperature, which would likely be the 
target operational point set by designers.

Experimental HTC values were computed using Newton’s Law of 
Cooling, assuming a uniform heat flux. Local wall temperatures 
are reflected by the OBR temperature measurements, while the 
fluid temperature was computed using calibrated thermocouples 
in the flow stream at the cold plate’s inlet and outlet. The heat 
transfer area used in this calculation reflect the area of the chan-
nels themselves (with the exception of the top surface). 

While all of the local wall temperatures could be directly mea-
sured through the fiber optic sensor, only the inlet and outlet 
fluid temperatures were experimentally measured. An energy 
balance on the fluid was utilized to compute average local flu-
id temperature values from within the cold plate, with the outlet 
temperature bounded by the experimental reading.

Numerically modelled HTC values were computed by use of a 
flow boiling correlation, which was adapted for supercritical fluid 
use by altering the thermodynamic quality and saturation prop-
erties accordingly [6]. Here, the single-phase HTC values were 
computed using the Dittus-Boelter equation. The supercritical 
HTC values (SC) were computed by multiplying the computed 
single-phase HTC (SP) by two constants – which incorporate a 
ratio of the fluid densities at effective “supercritical” saturation 
temperatures, a supercritical quality and a specific enthalpy term  
with the Froude number assumed to be unity as well as the sur-
face–fluid combination value (Gs,f).

Figure 4 - Average heat transfer coefficient with respect to SCO2 fluid temperature, reflected 
both experimentally and by the numerical model.

Figure 3 - Sample temperature map generated by OBR fiber optic sensor with a resolution 
of 1.3mm.

where
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Figure 5 shows how the local HTC varies in the streamwise direc-
tion of the cold plate, also using the above equations. Here it can 
be seen that the experimentally generated HTC values experience 
very little change, whereas the numerical model predicts more 
variation. This is likely due to the uniform heat flux assumption 
that had to be made without the implementation of a thermal test 
vehicle (TTV). Nonetheless, the streamwise model again comes 
close to predicting HTC values near the pseudocritical tempera-
ture. Knowledge of the local heat flux distribution would likely 
close this gap and give more merit to the numerical model.

Figure 6 demonstrates the relationship between cold plate pres-
sure drop and average fluid temperature. As the fluid heats up, the 
Reynolds number increases due to thermodynamic fluid property 

changes, driving up friction factor values and therefore pressure 
drop values. The inflection point, again near the pseudocritical 
temperature, is indicative of favorable operational temperatures. 

Experimental values were collected by use of a high-accuracy 
differential pressure sensor and modeled values were generated 
through the Darcy-Weisbach equation in conjunction with the 
Colebrook equation.

Temperature sweeps were conducted to evaluate optimal SCO2 
operational temperatures for the given fluid pressure. From the 
data presented, an operational temperature range of around 33-
34°C produced the highest HTCs with reasonably small pressure 
drops and therefore lower pumping power requirements.

Conclusions
When pressurized to 7.93MPa (1150psi) and flowing at only 
500g/min (1SLPM), SCO2 was able to produce HTCs nearing 
20kW/m2-K, dissipating heat flux densities of 41W/cm2 within a 
relatively simple cold plate that had just seven parallel channels 
and exhibited no sign of a critical heat flux condition. At the same 
operational parameters, a pressure drop of only 12kPa was mea-
sured; requiring only 0.1% of the input power to pump the fluid 
through the cold plate. In conjunction with SCO2’s low environ-
mental impact and abundance, this study is indicative of the flu-
id’s potential as a highly competitive coolant in electronics cool-
ing applications. It is also important to mention that operation at 
pressures nearer to the critical point and geometric optimization 
could substantially improve upon the metrics displayed here. It 
is expected that the numerical models generated for this study, 
while able to produce experimentally comparable values, would 
have a better agreement if the local heat flux density was known, 
thereby warranting future studies. 

Figure 5 - Streamwise heat transfer coefficient plot generated at a fluid inlet temperature 
of 34°C, reflected both experimentally and by numerical model.

Figure 6 - Cold plate pressure drop with respect to average SCO2 fluid temperature, reflected 
both experimentally and by the numerical model.

References
[1] Weiland, N. T., R. A. Dennis, S. Lawson, and P. Strakey. 2017. Fundamentals and applications of supercritical carbon dioxide 

(sCO2) based power cycles. (K. Brun, P. Friedman, and R. Dennis, eds.). Oxford Woodhead Publishing.
[2] Marion, J. 2022. “Supercritical CO2 10 MW Demonstration Project Under Construction.” Turbomachinery International, 2022.
[3] A. Nordlund, M. Harrison, B. Fronk, J. Gess, 2019, “Operation of a Supercritical CO2 Cold Plate for Electronics Cooling Applications” 

Thermal Technologies Workshop, Redmond WA
[4] B. Ramakrishnan et al., "CPU Overclocking: A Performance Assessment of Air, Cold Plates, and Two-Phase Immersion Cooling," 

in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 11, no. 10, pp. 1703-1715, Oct. 2021, doi: 
10.1109/TCPMT.2021.3106026.

[5] Optical Backscatter Reflectometry (OBR) Overview and Applications Introduction Reflectance and Return Loss Measuring Return 
Loss. n.d. Accessed: May. 17, 2023, 

 https://www.lunainc.com/sites/default/files/assets/files/resource-library/OBR%20-%20Overview%20and%20Applications.pdf
[6] Kandlikar, S. G., J, Heat Transfer, 112, 219, 1990.

where

http://www.electronics-cooling.com


20

FEATURED

Electronics Cooling  |  FALL 2023 electronics-cooling.com

Machines Now Fill and Perceive Scenes for 
Scientists and Engineers

Jewoo Park 
Jewoo Park is a visiting researcher at the University of California, Irvine in the Department of Mechanical and Aerospace Engi-
neering. His research topic is the reliability and durability of self-driving autonomous vehicles. He has 15 years of experience at 
the world-renowned vehicle company and is one of the group of ISO 26262 experts on Camera, Radar, and LiDAR sensor testing. 
He is an expert in developing sensor test modules and scenarios, with the focus being deterioration of sensor performance and 
physical deformation. 

Youngjoon Suh 
Youngjoon Suh is a postdoc at the University of California, Irvine in the Department of Mechanical and Aerospace Engineering. 
The overarching aim of his research aims to gain fundamental insights into two-phase transport physics by linking surface design, 
real-time nucleation statistics, and heat and mass transfer performances. His main research thrust models the interconnected 
relationships among boiling/condensation surfaces, bubble/droplet statistics, and heat transfer performance by integrating exper-
imental metrology, and machine learning. His work has been featured in the covers of various high-impact journals including Small, 
Journal of Colloid and Interface Science, and Advanced Science. He is also a recipient of the student keynote award at μFIP 2021 
and 2022, the best poster award at ICNMM 2019, and the 2018-2019 UCMexus Small Grant Award. 

Nhi Quach  
Nhi Quach is a Materials Science and Engineering Ph.D student at the University of California, Irvine who’s research focus is on 
material coating effects on transport properties. Her aim is to provide understanding of liquid kinetics within porous materials to 
optimize transport phenomena for heat transfer or mass transfer applications. Her work has been recognized in the Nasser Grayeli 
Outstanding Student Poster Award at ASME’s interPACK 2020. 

Yoonjin Won 
Yoonjin Won received the Ph.D. degree in Mechanical Engineering from Stanford University. She is currently an Associate Professor of 
Mechanical and Aerospace Engineering at the University of California, Irvine, USA, where her group studies thermofluidic and interfa-
cial phenomena by integrating novel metrology, computer vision, scientific machine learning, and data. Dr. Won was a recipient of the 
National Science Foundation CAREER Award, ASME Early Career Award, ASME Women Engineer Award, ICNMM Outstanding Lead-
ership Award, and the Emerging Innovation/Early Career Innovator from UCI Beall Innovation Center. Her research has been recognized 
through invited presentations at GRC, MRS, ICNMM, mTAS, microfip, ASTFE TEC Talk, NISE, and best paper awards at InterPACK, 
ITHERM, ICNMM, NSF-JST, and other places.

Introduction

A
rtificial intelligence (AI) has emerged as a powerful 
tool empowering scientists and engineers to inter-
act with computers in innovative ways, thereby rev-
olutionizing numerous fields. By leveraging AI, we 

can collaborate with machines to solve complex problems, gain 
valuable insights, and achieve significant advancements across 
diverse domains. One significant application of AI technology is 
deep learning-based computer vision for image processing. Com-
puter vision's primary objective is to enable machines to interpret 
and comprehend visual data. To describe a scene effectively, the 
traditional computer vision approach extracts informative patch-

es from digital images through algorithms, such as threshold and 
edge detection. Deep learning, on the other hand, has emerged 
as a powerful paradigm in computer vision, revolutionizing how 
machines process visual information. Deep learning models, par-
ticularly convolutional neural networks (CNNs), autonomous-
ly learn salient features directly from images. Instead of relying 
on explicit programming and hand-engineered rules, CNNs are 
trained on vast amounts of labeled data to automatically discov-
er relevant patterns and structures within images. The advance-
ments have led to great leaps in performance for visual tasks such 
as image segmentation, classification, object detection and track-

Nhi Quach, Youngjoon Suh, Jewoo Park, 
University of California, Irvine

Yoonjin Won
Stanford University
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ing, and restoration. These capabilities have become accessible 
to the public over the past decade. The ability of machines to 
accurately analyze and comprehend visual information has the 
potential to transform our daily lives, advance scientific under-
standing, and revolutionize various real-life applications, as il-
lustrated in Figure 1.

Firstly, deep learning-based computer vision seamlessly inte-

grates into various scientific research fields in Figure 2. One of the 
main challenges for scientists and engineers has been the capa-
bility to interpret scientific data and extract meaningful features 
from their experiments. The ability of machines to differentiate, 
harvest, and infer information from images opens new research 
avenues for researchers to study what has been deemed impos-
sible before. For instance, in the biomedical and healthcare sec-
tor, computer vision models are now helping medical physicians 

Figure 1 - Digitalizing visual scenes at the University of California, Irvine through deep learning-based computer vision (Segment Anything), categorizing objects into people, trees, bikes, 
and sky. These capabilities are poised to advance scientific discoveries and enable new engineering applications.

Figure 2 - Deep learning-based computer vision can assist with interpretating scientific data into features, such as thermofluidic bubbles, biology cells [1-3], or optimizing the design 
of materials [7].
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make complex diagnostics spanning dermatology, radiology, 
ophthalmology, and pathology by offering second opinions and 
detecting anomalies within medical images. 

The thermofluidic science community can also tackle century-old 
problems using modern techniques, such as deep learning-assist-
ed computer vision [1-3]. While phase change processes can create 
phase boundaries in the forms of bubbles and droplets, the access 
to these feature statistics can aid researchers in revisiting and build-
ing mechanistic models after high-speed videography. The training 
nature of deep learning-based computer vision models expands the 
usage applicability to a broad range of other visualization data, such 
as videography with low resolutions, fluorescence microscopy, and 
even infrared (IR) imaging. The ability to extract and record physi-
cally meaningful features from visual scenes has tremendous impli-
cations for real-time monitoring and dynamic analysis of complex 
behaviors [2, 3], screening and anomaly detection [4-5], and the 
prediction and forecasting of certain events, such as boiling crisis or 
dryout [1, 6]. The collaborative information, along with optimiza-
tion models, can be used to inversely design cooling structures, such 
as fins, pillar, or channels, for better performance even with a min-
imum number of experiments [7]. The evidence is clear that com-
puter vision offers tremendous advantages for researchers across 
various fields. The extent to which such technologies will translate 
into positive impacts on society depends on how actively they are 
adopted and explored in various scientific fields.
 
In addition to scientific research, various successes have been 
achieved in employing computer vision for real-life applications, 

such as in autonomous robots or vehicles. [9]. Autonomous ro-
bots include delivery drones for fast package transport or search 
robots for locating people during disaster or collecting informa-
tion at other planets. Once again, visual information from various 
sensors plays a critical role in assisting with applications. In this 
process, it is imperative to collect high-quality visual information. 
However, the process faces numerous challenges arising from 
external factors, such as fog, rain, dust, and bugs, and internal 
factors, such as temperature and thermal cycling, as demonstrat-
ed in Figure 3. For instance, condensed droplets or frost on the 
camera lens obstruct the physical view during image collection. 
Moreover, the distribution of rain or fog droplets affects the qual-
ity of visual data captured by sensors like LiDAR due to scattering 
effects on transmission wavelengths. Therefore, it becomes cru-
cial to understand various influencing factors and their impact on 
the visual information and performances.

Addressing concerns about the impact of various influencing 
factors on optical measurements can involve either hardware or 
software solutions. Mechanical or materials scientists have devel-
oped hardware solutions to be incorporated and researched to 
remove debris and buildup on optical lenses. External camera 
lenses are coated with hydrophobic materials to prevent conden-
sation and further frosting. Or lenses are installed with cleaners 
that involve a high-pressure spray system with a small amount 
of water. There are also research directions involving electro-
static and pulse heating, which can prevent or delay particle at-
tachment or droplet formation on the surface. While hardware 
solutions have been developed for a long time, software solutions 

Figure 3 - Computer vision challenges and difficulties shown with declining classification count and accuracy when comparing images taken from a clear lens (left) to images from a 
droplet covered lens (right). 
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are gaining popularity due to recent developments in deep learn-
ing-based computer vision technology. Post-processing through 
software solutions has led to an exploration of image restoration 
or reconstruction, a technique used to remove artifacts from a 
corrupted image to a clean image. The conventional approach to 
image restoration involves filling in missing or affected regions 
with information from surrounding pixels. However, this meth-
od, known as inpainting, was limited by the available informa-
tion in the image. When dealing with large-affected areas, the 
surrounding pixels may not provide sufficient data to restore the 
missing sections effectively. 

Recent advancements in deep learning methods have helped ad-
dress the issue of insufficient pixel information in image resto-
ration. These methods typically involve the use of encoder-de-
coder neural networks. Training datasets for these networks 
consist of pairs of corrupted images and their corresponding 
ground-truth images. The encoders are responsible for identify-
ing the image features that require restoration, while the decoders 
work to recover the image quality during training. Consequent-
ly, machine learning models such as generative AI or generative 
adversarial networks (GANs) are now emerging as promising 
candidates for addressing computer-vision-related limitations 
[8-12]. GANs have the benefit of generating discrimination be-

tween behaviors. GANs aim to emulate human brain character-
istics and generate outputs consisting of two sets of convolution 
layers simultaneously trained with a generator and a discrimina-
tor. The generator's role is to produce authentic-looking images, 
while the discriminator's task is to differentiate between real and 
generated ones. In scenarios where artifacts are present, the gen-
erator employs an attentive-recurrent network assigning higher 
values and weights to focus on corrupt regions during training. 
Through numerous epochs of training, the recurrent features are 
emphasized, creating an accurate mask that highlights the region 
needing restoration. The iterative process continues until the dis-
criminator can no longer distinguish the fake images generated 
by the generator from real images, thereby signifying the comple-
tion of the restoration process. 

The GAN’s restoration capability can also improve the capability 
of object segmentation and classification even with environmen-
tal artifacts, in this case, droplets, as shown in Figure 4 [8], which 
is essential for autonomous robots or vehicles. Here, the images 
are captured when the droplets are sprayed on the optical camera. 
The sprayed droplets are segmented and quantified by counting 
the number of pixels above a threshold of 50, resulting in four 
levels of increasing artifact severity: 1, 2, 3, and 4. The samples are 
thereby labeled as 1, 2, 3, and 4 accordingly. For the evaluation, 

Figure 4 - Flow chart detailing the processing for image restoration and comparison of the number of objects counted with YOLOv5 before (purple) and after the GAN restoration (green). 
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the images are segmented by using computer vision algorithms to 
count the number of objects of interest (e.g., cars). Subsequently, 
the restored images after applying GAN are analyzed. Figure 4 
showcases the images before and after GAN restoration. The plot 
(right bottom) indicates that the number of classified objects in-
creases by 30%, and the probability of classification increases by 
10% after GANs restoration. These findings confirm the potential 
of GAN and deep learning-based computer vision models for re-
al-world scenarios, especially in mild weather conditions. 

This GANs' restoration capability can also contribute to data 
interpretation. Researchers often face challenges in obtaining 
high-quality data, especially when conducting experiments in-
volving high-speed videography, as is the case in processes like 
boiling and condensation, which involve rapid nucleation and 
departure activities. It's crucial to emphasize that GANs not only 
excel at eliminating unwanted artifacts and repairing corrupted 
image segments but also possess the potential to offer intuitive, 
high-speed screening and analysis capabilities for rapidly evolv-
ing and intricate processes through automated object deblurring. 
Consequently, the integration of such deep learning-based com-
puter vision applications holds the potential for practical im-
provements in enabling high-quality video analysis or screening, 

even with non-laboratory-grade cameras.

Despite all the promising aspects of machine learning, it's import-
ant to recognize that deep learning models come with inherent 
costs. Developing robust models requires the use of extensive 
datasets and multiple training iterations. For example, in a re-
cent paper focused on scientific discoveries related to bubbles 
and droplets, a minimum of 2,500 images were used for train-
ing and testing the deep learning models [4], even with a ResNet 
backbone. It's worth noting that such ResNet backbones are often 
pre-trained on millions of images from the ImageNet database, 
enabling the pretrained network to classify images into 1,000 ob-
ject categories. This emphasizes the importance of utilizing pre-
trained networks that can cover diverse domains, substantially 
reducing the computational demands of model training.
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Overview

S
ometimes, regardless of how carefully we conduct test-
ing to gather data, we end up with results that just seem 
wrong. This could be a sign that we have stumbled upon 
an earth-shattering breakthrough that will change the 

world’s understanding of fundamental physics1…. or, it’s possi-
ble that a mistake in the testing led to bad data. This column will 
discuss a few examples of ways that testing mistakes that led to 
the collection of data that didn’t exactly tell the correct story.

One potential source of bad data is if there is a selection bias in 
the process of collecting data. This occurs when the method of 
collecting data tends to have a bias that slightly shifts the distribu-
tion of the collected data to one side of the normal distribution of 
the population. Classic examples of this have been seen in politi-
cal polling conducted with landline telephones: telephone-based 
polls in 1936 had a bias to more wealthy voters while the same 
method in 2020 resulted in a bias to older voters. One of the 
challenges in thermal testing is to ensure that the physics of tem-
perature measurement methods don’t introduce a bias in the 
results. Thermocouple measurements tend to generally be low, 
particularly when large thermocouple wires that can act as cool-
ing fins are used. When exposed to long-term high temperatures, 
thermocouple drift could influence results in testing conducted 
over long periods of time. Accurate infrared temperature mea-
surements rely on knowing something about the emissivity of 
the surface being measured – if that emissivity is not uniform or 
changes over time, bad data can be the result.

While knowledge of basic statistical approaches is important for 
data analysis, a healthy dose of skepticism is also helpful. Data are 
collected by human beings, who are known to occasionally make 
mistakes. When faced with data that look strange, it is a good idea 
to take the advice of the disembodied TSA voice at the airport: if 
you see something, say something. The strange results may in fact 
be accurate – but it is often worth the effort to double-check that 
the data haven’t been biased by a measurement error.

A few years ago, I was asked to analyze data collected in a study 
to evaluate the impact of solder voids on the solder joint reliabil-

ity of ball grid array (BGA) components subjected to thermal cy-
cling.  For this testing, 15 test boards were assembled with three 
different-sized daisy-chain BGA components with different con-
figurations of microvias in the solder pads on the test board. The 
‘BGA56’ was a 6mm x 6mm BGA with 56 solder balls on a 0.5mm 
pitch. Each test board included 4 replicates of the BGA56 with 
microvias in the test board solder pads (reference designators U1, 
U11, U15 and U24 correspond to the four locations where they 
were placed on the circuit board). Further details on the compo-
nent and test methods are provided in Reference [2].

The initial analysis of the test data consisted of calculating the 
Weibull distributions for each component configuration [3].  
When the Weibull distribution was calculated for the previously 
mentioned BGA56 configuration, the results looked somewhat 
strange, as shown in Figure 1. When cumulative distribution data 
appear to ‘bounce’ above and below the best-fit line, as in the fig-
ure, it is often the case that the data actually include values from 
different population characteristics.

Bad Data!
Ross Wilcoxon

Associate Technical Editor for Electronics Cooling
Collins Aerospace

1 Daisy chain components are custom test devices in which the solder joints are electrically connected together in series, i.e. ‘daisy chained’, so that if any solder joint 
fails and creates an electrical open, the failure can be detected.

Figure 1 - Cumulative failures of BGA56 components; symbols show measured data, line 
shows the best fit Weibull distribution
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Table 1 shows the measured failure data for the BGA56 compo-
nents, grouped by the reference designator, while Figure 2 shows 
the same plot as the previous figure, but with the data for the dif-
ferent reference designators indicated with different symbols.

Simple observation of either the raw or the plotted data should be 
sufficient to make one suspect that the reliability of the U1 com-
ponents was substantially different from the others. For quantifi-
able indications of whether there are differences between U1 and 
the other components, we could plot individual sets of data for 
each reference designator, as shown in Figure 3.

In addition, since all the components in consideration failed by 
the end of testing, we can assume that they followed a roughly 
normal distribution and compare the means using a t-test [4].  
Results of using a t-test to determine the probability that two 
populations have the same means are summarized in Table 2.   
Combinations with values less than 5% would typically be con-
sidered a statistically significant indication that the populations 
are different.  As shown in this table results from U1 appear to be 
significantly different from the other components, but there is no 
statistically significant difference between any of the other com-
binations; for example, the t-test between U11 and U24 produced 
a value larger than 5% (of 42.1%).

Alternatively, or if all of the components had not failed by the end 
of testing, we could compare the coefficients for the Weibull dis-
tributions of the different populations. Since the coefficients (β 
and θ, which as a reminder, are similar to the standard deviation 

Table 1 -  Measured failure data

Table 2 -  Results of t-tests that compare data sets in Table 1

Figure 2 - Cumulative failures of BGA56 data plotted for different component reference 
designators

Figure 3 - Cumulative failure distributions for BGA56 components, segregated by different 
component reference designators

BOARD #
CYCLES TO FAILURE

U1 U11 U15 U24

1 10 867 807 859

2 42 651 902 671

3 338 733 612 948

4 18 829 906 850

5 3 886 591 856

6 21 814 759 793

7 112 657 773 692

8 322 730 746 699

9 724 776 771 945

10 4 673 804 692

11 228 754 817 970

12 28 813 773 896

13 71 966 716 1071

14 9 885 774 720

15 2 964 865 837

U1 U11 U15

U24 0.0% 42.1% 14.0%

U15 0.0% 47.2%

U11 0.0%

Table 3 -  Regression analysis coefficients for 80% confidence level

β (value & range) Θ (value & range)

ALL 0.66 0.52 – 0.79 859 34 – 1.11e5

U1 0.60 0.54 - 0.66 85 40 - 214

U11 8.71 7.9 - 9.52 844 269 - 3357

U15 9.26 8.34 - 10.2 816 245 - 3540

U24 7.82 6.89 - 8.75 888 211 - 5519
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and mean of a normal distribution) are calculated using linear 
regression, we can determine the uncertainty of the values for a 
given confidence level [5]. The results of this analysis are shown 
in Table 3; the ‘range’ values indicate the values in which one is 
80% confident that the values of β and θ are within. This table 
shows substantial differences in the calculated coefficients and 
their ranges for the selected confidence level.

Dedicated readers of this column are invited to review references 
[3-5] and duplicate the results shown in Table 2 and Table 3.

After it was recognized that there was such a significant differ-
ence in the results for the U1 components than the others, efforts 
were made to determine the source of the difference. Inspections 
of micrographic cross-sections of failed parts revealed that U1 
components consistently had a single solder joint with insuffi-
cient solder. Eventually, it was determined that an error had been 
made in the design of the solder stencil used to apply solder to the 
test board prior to part placement and solder reflow. This led to 
no solder paste being applied to the solder pad, which produced a 
solder joint that was doomed to fail far earlier than it should have.
This was an example in which the statistical analysis revealed a 
problem with the testing approach. Fortunately, because of the 
nature of thermal cycling to evaluate solder joint reliability, there 
were ample opportunities to assess the components after the fact 
and identify the root cause. In other types of testing, it may be dif-
ficult to determine a true root cause if the nature of the test does 
not leave as many ‘bread crumbs’ to determine what happened.  
That may lead to the need to repeat a test. 

Sometimes we don’t have an entire set of data that is question-
able, but just one odd result.  Can we just throw out the data we 
don’t like?  Well, we probably shouldn’t…. But if data are drawn 
from a population that truly is a normal distribution, it is certain-
ly possible to occasionally have a measurement that is 4 or 5 (or 
more) standard deviations from the mean. These types of outliers 
may be real – but they may not provide a good indication of the 
true population, particularly if we have only a few measurements. 
Chauvenet’s Criterion can be used to assess whether a single data 
point is an outlier and provides a formal method that can justi-
fy eliminating a data point that seems to be an outlier [5].  The 
Chauvenet test statistic, τ, is defined in equation 1:

  τ = |x-μ|/σ (1)

where x is the suspicious value, μ and σ are, respectively, the mean 
and standard deviation of the population. The value of τ depends 
on the number of measurements made in the population, as 
shown in Table 4. The test statics in the table can be calculated 
with Excel using the function “abs(norm.s.inv(1/(4*n)))”.

To use the Chauvenet Criterion to assess an outlier data point, 
calculate the mean and standard deviation of the full data set (in-
cluding any suspected outliers) and then calculate the value of τ 
as shown in equation 1.  If that value is larger than the test statistic 

shown in Table 4 for the population size, that outlier data point 
can be removed so that the average and standard deviations can 
be determined without it. 

For example, I recently tested thermoelectric cooler (TEC) devic-
es to measure their performance characteristics.  This was done 
with an existing thermal test stand that required that two TECs 
be tested and averaging the performance of both. As part of this 
testing, I conducted repeated tests of the same TECs to better un-
derstand the measurement variability. The same pair of TECs was 
tested six times and the average Qmax value, which is the maxi-
mum heat that can be input to the TEC while maintaining zero 
temperature difference on the two sides.

The six measured values for Qmax are shown in the xoriginal column 
of Table 5, with average and standard deviation values of 4.833 
and 0.290. The normalized deviation is calculated by finding the 
absolute value of the difference between a value and the mean and 
then normalizing it by the standard deviation. The measurement 
of 4.33W has a deviation of 1.91, which is larger than the value of 
τ for n = 6 of 1.732, as shown in Table 4. Therefore, we can use the 
Chauvenet criterion to eliminate that one data point and assume 
our data set is that shown in the Xupdated column.

Figure 4 plots the data and shows the impact of applying the 
Chauvenet Criterion. Eliminating the single outlier actually did 

Table 4 - Chauvenet test statistics

n τ

3 1.383

4 1.534

5 1.645

6 1.732

7 1.803

8 1.863

9 1.915

10 1.960

Table 5 - TEC Measurements and Data Analysis

xoriginal (x-μ)/σ xupdated

measured 
values for 

Qmax

(W)

5.13 0.85 5.13

4.95 0.23 4.95

4.83 0.18 4.83

4.33 1.91  

4.99 0.37 4.99

5.07 0.64 5.07

mean, μ 4.883  4.994

st dev, σ 0.290 0.115
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not change the average value much (increasing it by 2.3%). The 
main impact of applying the Chauvenet Criterion was on the 
standard deviation, which is reduced by more than 60%.

Summary
Statistical analysis is not simply a process of plugging data into 
a set of equations and reporting the results. It is important that 
the analyst pays attention to the data to try to detect values that 
could be problematic and lead to incorrect conclusions. In some 
cases, a statistical analysis can detect results that do not accurately 
characterize the true population and help to guide the researchers 
to review their test approach to identify an experimental error. In 
other cases, testing may not have left any ‘breadcrumbs’ that can 
be used to find direct evidence of why a data point is an outlier. 
As a general rule, data should not be simply discarded because it 
is inconvenient, but methods such as Chauvenet’s Criterion do at 
least provide a formal method that can help to justify removing 
a measurement that excessively increases the measured variance.

Figure 4 - TEC data before and after removing one data point using Chauvenet’s Criterion.  
Error bars indicate one standard deviation.
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